
Series I, exercise 1 Let n ∈ N. Prove that for any 2n points on the plane it is possible

to join n pairs of points by segments which do not intersect.

Solution Let us draw n segments on the plane with endpoints among the given 2n

points. If they don't intersect we are done. Assume to the contrary. Let us analyze the pair

of segments AB and CD that intersect as if ABCD were consecutive vertices of a convex

quadrangle. Then the proper transform is to change segments into segments AC and BD

which don't intersect (that is instead of the segments being the diagonals of the quadrangle

they are the non-adjacent sides of it.

Now let us consider the sum of all lengths of the given segments. As the sum of the

lengths of the diagonals of the convex quadrangles has to be greater than the sum of the

lengths of two sides after each such exchange the total sum becomes smaller. As the set of

points is �nite so is the possible number of such sums. After a �nite number of steps we

reach the minimal sum, which �nishes the proof.
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Series I, exercise 2 Calculate

lim
n→∞

((
√
3 + 1)n − b(

√
3 + 1)nc),

where bxc = max{k ∈ Z : k ≤ x}.

Solution

First, observe that for any n ∈ N there are an, bn ∈ N such that (
√
3 + 1)n = an + bn

√
3.

From the Pascal's triangle we have

(
√
3 + 1)n =

n∑
k=0

(
n

k

)
(
√
3)n−k

and

(
√
3− 1)n =

n∑
k=0

(
n

k

)
(
√
3)n−k(−1)k.

Therefore, if n is even then in both sums the terms for even k are the same and for odd are

opposite. Even terms of both sums are integers, so for even n (
√
3 − 1)n = an − bn

√
3. If n

is odd, then for odd k the terms in both sums are the same, and so for odd n (
√
3− 1)n =

bn
√
3− an.

For even n we have

(
√
3 + 1)n − b(

√
3 + 1)nc = (

√
3 + 1)n + (

√
3− 1)n − (

√
3− 1)n − b(

√
3 + 1)nc

= an + bn
√
3 + an − bn

√
3− ban + bn

√
3c − (

√
3− 1)n = an − bbn

√
3c − (

√
3− 1)n.

On the other hand, for odd n we have

(
√
3 + 1)n − b(

√
3 + 1)nc = (

√
3 + 1)n − (

√
3− 1)n + (

√
3− 1)n − b(

√
3 + 1)nc

= an + bn
√
3 + an − bn

√
3− ban + bn

√
3c+ (

√
3− 1)n = an − bbn

√
3c+ (

√
3− 1)n.

We will now show that an − bbn
√
3c = 1 for even n and an − bbn

√
3c = 0 for odd n. It is

easy to see that

an − bbn
√
3c = 1⇔ an − bn

√
3 ∈ (0, 1]

and

an − bbn
√
3c = 0⇔ an − bn

√
3 ∈ (−1, 0].

For n ∈ N we have

an+2+bn+2

√
3 = (an+bn

√
3)(1+

√
3)2 = (an+bn

√
3)(4+2

√
3) = (4an+6bn)+(2an+4bn)

√
3,
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so an+2 = 4an + 6bn and bn+2 = 2an + 4bn. We also have

an+2 − bn+2

√
3 = 4an + 6bn − (2an + 4bn)

√
3 = 4(an − bn

√
3)− 2

√
3(an − bn

√
3)

= (an − bn
√
3)(4− 2

√
3) ≈ 0, 5(an − bn

√
3).

Therefore, if an− bn
√
3 ∈ (0, 1], then also an+2− bn+2

√
3 ∈ (0, 1], and if an− bn

√
3 ∈ (−1, 0],

then also an+2− bn+2

√
3 ∈ (−1, 0]. For n = 1 a1− b1

√
3 = 1−

√
3 ∈ (−1, 0], so, by induction,

for all n we have a2n−1 − b2n−1
√
3 ∈ (−1, 0]. For n = 2 a2 − b2

√
3 = 4− 2

√
3 ∈ (0, 1], so, by

induction, for all n we have a2n − b2n
√
3 ∈ (0, 1]. Thus, for n ∈ N

(
√
3 + 1)2n = a2n − bb2n

√
3c − (

√
3− 1)2n = 1− (

√
3− 1)2n → 1

and

(
√
3 + 1)2n−1 = a2n−1 − bb2n−1

√
3c+ (

√
3− 1)2n−1 = (

√
3− 1)2n → 0.

Hence the limit lim
n→∞

((
√
3 + 1)n − b(

√
3 + 1)nc) does not exist.
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Series I, exercise 3 Find all pairs (n, k) of natural numbers which satisfy

1

n
+

1

k
=

3

2018
.

Solution

First rewrite the equation as 2 · 1009(n + k) = 3nk, and note that 1009 is prime, so at

least one of a and b must be divisible by 1009. If both n and k are divisible by 1009, say with

n = 1009q, k = 1009r, then we have 2(q+r) = 3qr. But qr ≥ q+r for integers q, r ≥ 2, so at

least one of q, r is 1. This leads to the solutions q = 1, r = 2 and r = 1, q = 2, corresponding

to the ordered pairs (n, k) = (1009, 2018) and (n, k) = (2018, 1009).

In the remaining case, just one of n and k is divisible by 1009, say n = 1009q. This

yields 2 · 1009(1009q + k) = 3 · 1009qk, which can be rewritten as 2 · 1009q = (3q − 2)k.

Because the prime 1009 does not divide k, it must divide 3q − 2; say 3q − 2 = 1009a. Then

1009a + 2 = 3 · 336a + a + 2 is divisible by 3, so a = 1(mod3). For a = 1, we get q = 337,

n = 1009337, k = 2q = 674. For a = 4, we get q = 1346, n = 1009 · 1346, k = q/2 = 673. We

now show there is no solution with a > 4. Assuming there is one, the corresponding value of

q is greater than 1346, and so the corresponding k = 2q
3q−2109 is less than 673. Because k is

an integer, it follows that k ≤ 672, which implies 1
k
≥ 1

672
≥ 3

2018
, contradicting 1

n
+ 1

k
= 3

2018
.

Finally, along with the two ordered pairs (n, k) for which n is divisible by 1009 and k is not,

we get two more ordered pairs by interchanging n and k.
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