Publikacje Katedry Funkcji Rzeczywistych

prof. W. Wilczyński

WYKAZ PUBLIKACJI:

[1] On the family of sets of limit numbers, Bull. Acad. Pol. Sc. 18(8) (1970), 453-460 (co-author J. Jędrzejewski).

[2] On points of absolute continuity. Functions of several variables, Coll. Math. 22 (2) (1971), 285-289.

[3] On some families of functions I, Bull Acad. Pol. Sc. 19 (6) (1971), 429-435.

[4] On piecewise flat surfaces in the sense of Toralballa, Ann. Pol. Math. 24 (1971), 253-259.

[5] On some families of functions II, Bull. Acad. Pol. Sc. 19 (10) (1971), 907-910.

[6] On the family of sets of approximate limit numbers, Fund. Math. 75 (1972), 169-174.

[7] Some kind of generalized convexity of functions, Bull. Acad. Pol. Sc. 20 (9) (1972), 721-724.

[8] On the set of points of absolute continuity of differentiable functions of two variables (in Poland), Scientific Bulletin of University of Łódź (1973), 15-18.

[9] On the family of sets of (B)-limit numbers (in Polish), ibid., 39-43 (co-author J.Jędrzejewski).

[10] Remarks on homeomorphic equivalence of measurable and summable functions (in Polish), ibid, 45-51 (co-author T. Świątkowski).

[11] On the family of sets of qualitative limit numbers, Rev. Roum. Math. Pur. Appl 18 (1973), 1297-1302.

[12] A non-parametric surface having the property of Zahorski, Bull. Acad. Pol. Sc. 22 (3) (1974), 251-256.

[13] Qualitative cluster sets, Coll. Math. 32 (1) (1974), 113-118.

[14] Składanie przekształceń o wahaniu skończonym, Wydawnictwo UŁ 1974 (habilitation thesis).

[15] Absolute continuity of functions of two variables and the theorem of Burenkoff, Rend. Circolo Mat. Palermo 24 (1975), 84-86.

[16] Superpositions of transformations of bounded variation, Fund. Math. 90 (1976), 211-231.

[17] Finite partitions of the real line consisting of similar sets, Acta Sci. Math. 38 (1976), 191-192.

[18] Topologies and classes of continuous real functions, Bull. Acad. Pol. Sc. 24 (1) (1976), 905-907.

[19] Remark on the theorem of Egoroff, Cas. pro pest. mat. 102 (1977), 228-229.

[20] Classes of continuous real functions, Real Analysis Exchange 4 (1978-79), 139-157 (co-authors B. Koszela and T. Świątkowski).

[21] Su una condizione di derivabilita rispetto and una funzione continua, Bolletino U.M.I. 16-A (1979), 560-567 (co-author V. Aversa).

[22] Sui punti AC − w per una funzione, Le Mathematiche 34 (1-2) (1979), 1-7 (co-author V. Aversa).

[23] Convergence of sequences of measurable functions, Acta Math. Acad. Sci. Hun-gar. 36 (1980), 125-128 (co-author El żbieta Wagner).

[24] Convergence almost everywhere of sequences of measurable functions, Coll. Math. 45 (1) (1981), 119-124 (co-author E. Wagner).

[25] Spaces of measurable functions, Rend. Circolo Mat. Palermo, Serie II 30 (1981),97-110 (co-author E. Wagner).

[26] Upper andłower limits with respect to the -ideal, Bull. Soc. Sci. Lettr. Łódź 31 (3) (1981), 1-8.

[27] On points of w-bounded variation, Zeszyty Naukowe P L 14 (1982), 61-64 (co-author V. Aversa).

[28] On the condition of Darboux and of Świątkowski for functions of two variables, ibid. 15 (1982), 31-35 (co-author H. Pawlak).

[29] Remarks on generalized bounded variation and generalized absolute continuity, ibid. 16 (1983), 11-15 (co-author W. Poreda).

[30] Transfinite sequences of continuous functions, ibid. 16 (1983), 17-24 (co-author E. Wagner-Bojakowska).

[31] Remarks on the convergence in measure, ibid. 16 (1983), 61-64 (co-author E. Wagner-Bojakowska).

[32] Remarks on density topology and its category analogue, Supplemento Rend. Circolo Mat. Palermo, Serie II, 5 (1984), 145-153.

[33] Some remarks on I-approximately continuous functions, Ricerche di Matematica 33 (1) (1984), 63-79 (co-author V. Aversa).

[34] A category analogue of the density topology, approximate continuity and approximate derivative, Real Analysis Exchange 10 (2) (1984-85), 241-265.

[35] A category analogue of the density topology, Fund. Math. 125 (1985), 167-173 (co-authors W. Poreda, E. Wagner-Bojakowska).

[36] Remarks on I-density and I-approximately continuous functions, Comm. Math. Univ. Carolinae 26 (1985), 553-563 (co-authorsW. Poreda. E.Wagner-Bojakowska).

[37] I-density points of plane sets, Ricerche di Matematica 34 (1) (1985), 147-157 (co-author R. Carrese).

[38] Separate I-approximate continuity implies the Baire property, Zeszyty Naukowe Politechniki Śląskiej 48 (1986), 227-230.

[39] Homeomorphisms preserving I-density points, Bolletino U.M.I. (7) 1-B (1987), 275-285 (co-author V. Aversa).

[40] O’Malley property for category density, Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 141-146.

[41] On one- and two-dimensional I-densities and related kinds of continuity, Real Analysis Exchange 13 (1) (1987-88), pp. 80-92, 130-150, 120-121 (the sequenceof pages was mistaken by the editors) (co-authors M. Balcerzak, E. Łazarow).

[42] The homeomorphic transformation of C-sets into superdense sets, ibid 14 (2) (1988-89), 464-468 (co-author P. Humke).

[43] On some geometrical characterization of singular normed measures, Acta Univ. lodziensis 3 (1989), 105-110 (co-author W. Tempczyk).

[44] Hereditary k-separability and the hereditary k-Lindelof property in function spaces, Comm. Math. Univ. Carolinae 30 (1) (1989), 75-80 (co-authors R.A. Johnson, E. Wajch).

[45] Topologies related to sets having the Baire property, Demonstratio Math. 22 (1) (1989), 179-191 (co-authors R.A. Johnson, E. Łazarow).

[46] I-approximate derivatives, Radovi Matematicky 5 (1989), 15-27 (co-author E. Łazarow).

[47] A non-measurable d × d quasi continuous function, Bull. Soc. Sci. Lettr. Łódź 90 (9) (79) (1990), 147-150.

[48] I-density points of some plane sets, ibid. 90 (1) (80) (1990), 151-155.

[49] Three cardinal functions similar to net weight, Proc. Amer. Math. Soc. 109 (1990), 261-268 (co-authors R.A. Johnson, E. Wajch).

[50] Asymmetry of all countable orders of a real function, Real Analysis Exchange 16 (1) (1990-91), 273-278 (co-author Hong Yong chol).

[51] Metric spaces and multiplication of Borel sets, Rocky Mountain J. of Math. 22 (4) (1992), 1341-1347 (co-authors R.A. Johnson, E. Wajch).

[52] Density topologies, Problemy Matematyczne WSP Bydgoszcz 13 (1992), 45-53 (co-author W. Wojdowski).

[53] Finite products of Borel measure, Supplemento Rend. Circolo Mat. Palermo, Proc. of the Measure Theory Conference, Oberwolfach 1990, Serie II 28 (1992), 141-148 (co-author R.A. Johnson).

[54] Translations of measurable sets (in Russian), Proc. of Georgian Acad. Sci. 145 (1) (1992), 43-46 (co-author A. Harazishvili).

[55] Sequence conditions which imply I-approximate continuity, Tatra Mountains Math. Publications 2 (1993), 135-139.

[56] I-density continuous transformations on R2, Atti Sem. Mat. Fiz. Univ. Modena 42 (1994), 279-287 (co-author G. Horbaczewska).

[57] Why only measure and category?, Zeszyty Naukowe P L 26 (1994), 89-94 (co-authors M. Balcerzak, J. Hejduk, S. Wroński).

[58] Density continuous transformations on R2, Real Analysis Exchange 20 (1) (1994/95), 102-118 (co-author K. Ciesielski).

[59] On the transformations of measurable sets and sets with the Baire property, Real Analysis Exchange 20 (1) (1994/95), 178-182 (co-author G. Rzepecka).

[60] Approximate core topologies, Real Analysis Exchange 20 (1) (1994/95), 192-203 (co-author E. Wagner-Bojakowska).

[61] Approximate core a.e. topology, Zeszyty Naukowe P L 27 (1995), 129-138 (co- author E. Wagner-Bojakowska).

[62] Two remarks about surfaces, Acta Univ. lodziensis, FoliaMathematica 7 (1995), 89-96 (co-author G. Rzepecka).

[63] Upper andłower limits with respect to the m-ideal, Acta Univ. lodziensis 7 (1995), 97-104 (co-author W. Wojdowski).

[64] Classes of continuous real functions (II), Real Analysis Exchange 21 (2) (1995/96), 386-406 (co-authors W. Grudziński, B. Koszela, T. Świątkowski).

[65] Classes of Continuous Functions, Atti Sem. Mat. Fis. Univ. Modena 44 (1996), 385-393 (co-author V. Aversa).

[66] Sequence conditions which imply approximate and I-approximate continuities of functions of two variables, Tatra Mountains Math. Publications 8 (1996), 221-228 (co-author W. Wojdowski).

[67] Separation Axioms for Some Modifications of the Core Topology, Atti Sem. Mat. Fis. Univ. Modena 46 (1998), 361-370 (co-author E. Wagner-Bojakowska).

[68] Pseudocontinuous functions, Analysis and topology, World Scientific Publishing Company (1998), 363-375 (co-author R.A. Johnson).

[69] Intersections of topologies, Bull. Soc. Sci. Lettr. Łódź 48 (1998), 5-10 (co-author S. Wroński).

[70] On sets for which the difference set is the whole space, Rocznik Naukowo-Dydaktyczny WSP w Krakowie 207 (1999), 45-51 (co-author Z. Kominek).

[71] Cauchy condition for the convergence in category, PAMS 128, (1999), no. 2, 413-418 (co-author E. Wagner-Bojakowska).

[72] The interior operation in a Ψ-density topology, Rend. Circolo Mat. Palermo 49 (2000), 5-26 (co-author E. Wagner-Bojakowska).

[73] Comparison of Ψ-density topologies, Real Analysis Exchange 25 (2) (1999/2000), 661-672 (co-author E. Wagner-Bojakowska).

[74] Ψ-density topology for discontinuous regulator functions, Atti Sem. Mat. Fis. Univ. Modena 48 (2000), 473-479 (co-author V. Aversa).

[75] I-convergence, Real Analysis Exchange 26 (2) (2000/2001), 669-686 (co-authors P. Kostyrko, T. ˇ Salat).

[76] Problem concerning the Lebesgue density at a point, Unsolved Problems onMathematics for the 21st Century, A Tribute to Kiyoshi Iseki’s 80th Birthday, IOS Press 2001, 307-318.

[77] Remarks on Area Densities, Reports on Real Analysis, Słupsk 2001, 37-49 (co-author M. Filipczak).

[78] On some properties of the class A, Real Analysis Exchange 27, (2001/2002), no. 1, 141-153 (co-authors R. Pawlak, B. Świątek).

[79] Topology similar to the density topology, Bull. Soc. Sci. Lettr. Łódź 34 (2001), 55-60 (co-author W. Poreda).

[80] The union of Ψ-density topologies, Atti Sem. Mat. Fis. Univ. Modena 50 (2002), 313-326 (co-author E. Wagner-Bojakowska).

[81] Density topologies, Chapter 15 in Handbook of Measure Theory. Edited by E. Pap. Elsevier 2002, 675-702.

[82] Sums of periodic Darboux functions and measurability, Atti Sem. Mat. Fis. Univ. Modena 51 (2003), 369-376 (co-author T. Natkaniec).

[83] Topologies similar to the density topology, Atti Sem. Mat. Fis. Univ. Modena 51 (2003), 433-439 (co-author G. Horbaczewska).

[84] Signed series revisited, Bull. Soc. Sci. Lettr. Łódź 53 (17) (2003), 5-9.

[85] Density topology and pointwise convergence, Applied General Topology 4 (2003), no. 2, 509-512.

[86] Simple density topology, Rend. Circ. Mat. Palermo, Serie II, Tomo LIII (2004), 344-352 (co-author V. Aversa).

[87] Statistical density points, Acta Universitatis lodziensis, Folia Mathematica 11, (2004), no. 1, 59-62.

[88] Multiplying balls in the space of continuous functions on [0, 1], Studia Math. 170 (2) (2005), 203-209 (co-authors M. Balcerzak, A. Wachowicz).

[89] On homeomorphisms of the density type topologies, Commentationes Mathematicae XLV(2) (2005), 151-159 (co-authors M. Filipczak, J. Hejduk).

[90] Upper andłower limits of sequences of measurable sets and of sets with the Baire property, Acta Universitatis  lodziensis, Folia Mathematica, University of Łódź Press 12 (2005), no. 1, 73-80 (co-author W. Wojdowski).

[91] Density topologies connected with Hausdorff measures, Atti Sem. Mat. Fis. Univ. Modena 53 (2005), 207-213 (co-author E. Wagner-Bojakowska).

[92] On permuted and symmetric products of -ideals, Bull. Soc. Sci. Lettres Łódź, Recher. D´eform. 50 (2006), 103-109 (co-author A. Tomaszewska).

[93] On Riemann derangement theorem, Słupskie Prace Matematyczno-Fizyczne 4 (2007), 79-82.

[94] Complete density topology, IndagationesMathematicae New Series 18(2) (2007), 295-303 (co-author W.Wojdowski).

[95] Density topologies, Scientific Bulletin of Che lm, Section of Mathematics and Computer Science 1 (2007), 223-227.

[96] I and I-convergence of double sequences, Math. Slovaca 58 (2008), no. 5, 605- 620 (co-authors P. Das, P. Kostyrko, P. Malik).

[97] Interior in the simple density topology, Topology and its Applications 155 (2008), 1974-1979 (co-author V. Aversa).

[98] Density topologies on the plane between ordinary and strong, Tatra Moutains Math. Publ. 44 (2009), 139-151 (co-author E. Wagner-Bojakowska).

[99] The set of points of discontinuity of I-approximately continuous functions, Demonstratio Math. 43 (2010), no. 3, 539-544.

[100]Strict density topology of the plane. Category case, Tatra Moutains Math. Publ. 46 (2010), 55-64 (co-author M. Filipczak).

[101]Strict density topology of the plane. Measure case., Rend. Circ. Mat. Palermo 60 no.1-2 (2011), 113-124 (co-author M. Filipczak).

[102]A category Ψ-density topology, Cent. Eur. J. Math. 9(5) (2011), 1057-1066 (co-author W. Wojdowski).

[103]p−q-convergence of sequences of measurable functions, Topology and its Applications 158 (2011), 1478-1492(co-authors C. Papachristodoulos, N. Papanastassiou).

[104]Ideal exhaustiveness, continuity and ()-convergence for lattice group-valued functions, Inter. J. Pure Appl. Math. 70 (2011), no. 2, 211-227 (co-authors A.Boccuto, X.Dimitriou, N. Papanastassiou).

[105]Generalized continuous convergence, Selected papers of the 2010 International Conference on Topology and its Applications, (Nafpaktos, Greece), Technological Educational Institute of Messolonghi, 2012, 184-188.

[106]On points of the regular density, Tatra Mountains Mathematical Publications 52 (2012), 9-17 (co-author S. Lindner).

[107]On the Lebesgue density theorem, Journal of Applied Analysis 18 (2012), 275- 281.

[108]Convergence of sequences of measurable functions, Traditional and present-day topics in real analysis, Dedicated to Professor Jan Stanisław Lipiński Wydawnictwo UŁ, 2013, 55-67 (co-author E. Wagner-Bojakowska); Editors M. Filipczak and E. Wagner-Bojakowska.

[109]Density topology generated by the convergence everywhere except for a finite set, Demonstratio Math. 46, 1 (2013), 197-208 (co-author M. Górajska).

[110]Cardinality of sets of -upper and -lower continuous functions, Bull. Soc. Sci. Lettres Łódź LXIV, no. 2 (2014), 71-80 (co-authors M. Bienias, S. Głąb).

[111]Modes of ideal continuity and the additive property in the Riesz space setting, J. Appl. Analysis 20,1 (2014), 41-53 (co-authors A. Boccuto, X. Dimitriou, N. Papanastassiou).

[112]Remarks on exceptional points and differentiation bases, Acta Math. Hungar (2015), (co-authors M. Filipczak, T. Filipczak, G. Horbaczewska).

[113]Mixed partial density topology, Bull. Soc. Sci. Lettres Łódź LXV, no. 5 (2015), 29-37.

[114]Density topologies on the plane between ordinary and strong. II, TatraMt. Math. Publ. 62,1 (2015), 13-25 (co-author E. Wagner-Bojakowska).

[115]Density topology involving microscopic sets and category, Tatra Mt. Math. Publ. 62,1 (2015), 113-132 (co-authors E. Wagner-Bojakowska, W. Wojdowski). [116]Weak convergence with respect to category, Modern Real Analysis, dedicated to Professors Roman Ger, Jacek Jędrzejewski, Zygfryd Kominek. Wydawnictwo UŁ 2015, 185-192. Editors J. Hejduk, S. Kowalczyk.

[117]Convergence in measure and in category, similarities and differences, Aequationes Mathematicae 90 (2016), 99-105.

[118]On semi-regularization of the density type topologies, Bull. Soc. Sci. Lettres Łódź LXVI, no. 2 (2016), 91-103 (co-authors J. Hejduk, W. Wojdowski).

Podręczniki:

[1] Elementarne zadania z teorii przestrzeni metrycznych, Wydawnictwo UŁ, 1972 (co-author J. Jędrzejewski).

[2] Matematyka. Skrypt dla słuchaczy Studium Języka Polskiego dla Cudzoziemców, Wyd. 3. Cz. 2. Łódź: Uniw. Łódź 1982. Red. skryptu. Autorzy: Anna Frieske, Józef Jerzewski and Jadwiga Radaszewska, str. 256.

[3] Przestrzenie metryczne w zadaniach, Wydawnictwo UŁ, 1999, wyd. II; 2007, wyd. III (co-author J. Jędrzejewski).

Komunikaty:

[1] Topologies and classes of continuous real functions of a real variable, Rend. Circ. Mat. Palermo, Serie II, 26 (1977), 113-115.

[2] Convergence structure in the set of measurable functions, Proc. of the Conference on convergence, Held in Szczyrk 1979, Katowice 1980, 100-109 (co-author E. Wagner).

[3] Sequences of measurable functions, Proc. of the Conference ”Functions, Series, Operators”, Colloquia Mathematica Societatis Janos Bolyai, Budapest 1980, 1267-1274.

[4] A generalization of the density topology, Real Analysis Exchange 8 (1) (1982/83), 16-20.

[5] On some geometrical characterization of singular normed measures, Zeszyty NaukoweWyższej Szkoły Pedagogicznej w Bydgoszczy, Problemy Matematyczne 1985 z. 7, 153-154 (co-author W. Tempczyk).

[6] Is it possible to find a Category Analogye of the density at a point?, Reports on Real Analysis, Słupsk 2001, 151-155.

[7] On permuted and symmetric products of -ideals, Reports on Real Analysis, Conference at Rowy 2003, 190-192 (co-author A. Tomaszewska).

[8] On Lebesgue density theorem, Reports on Real Analysis, Conference at Rowy 2003, 204-207.

[9] On the Lebesgue density theorem, Real Analysis Exchange, 27 Summer Sumposium (2003), 229-232.

[10] Stochastic convergence and points of density, Transactions of the XXIV International Seminar on Stability Problems for Stochastic Models, Jurmala, Latvia, 2004, p. 36.

[11] Density topologies on the plane between ordinary and strong, International Conference on Topology and its Applications, Ankara, Turkey, July, (2009); 39 (co-author E. Wagner-Bojakowska).

[12] Density topologies on the plane, International Conference on Topology and its Applications, Ankara, Turkey, July, (2009); 40.

[13] Generalized continuous convergence, 2010 International Conference on Topology and its Applications, June 26-30 Nafpaktos, Greece; 208-209.

[14] A generalization of the Lebesgue density topology, 2010 International Conference on Topology and its Applications, June 26-30 Nafpaktos, Greece; 209-210 (co- author W. Wojdowski).

[15] A category analogue of the Ψ-density topology, 24th Summer Conference on Real Functions Theory, Stara Lesna, Slovakia, 2010; 62 (co-author W. Wojdowski).

[16] Density topology on the plane between ordinary and strong II, 27th Summer Conference on Real Functions Theory, Stara Lesna, Slovakia, 2013; 92 (co-author E. Wagner-Bojakowska).

[17] A new kind of density type points, 29th Summer Conference on Real Functions Theory, Stara Lesna, Slovakia, 2015; 92.

[18] Density topology on the plane between ordinary and strong III, 30th Summer Conference on Real Functions Theory, Stara Lesna, Slovakia, 2016; (co-author E. Wagner-Bojakowska).

Prace z historii matematyki:

[1] Funkcje rzeczywiste w Polsce do roku 1950, Uniwersytet Szczeciński. MateriałyKonferencje nr 16 (1995), 83-91.

[2] Prace Wacława Sierpińskiego z funkcji rzeczywistych, Dzieje Matematyki Polskiej, Instytut Matematyczny Uniwersytetu Wrocławskiego, Wrocław 2012, 299-306 (pod redakcją Witolda Więsława).

[3] Twórczość Stanisława Ruziewicza, Dzieje Matematyki Polskiej II, Instytut Matematyczny Uniwersytetu Wrocławskiego, Wrocław 2013, 239-245 (pod redakcją Witolda Więsława).

[4] Prace Zygmunta Zahorskiego o pierwszej pochodnej, Dzieje Matematyki Polskiej II, Instytut Matematyczny Uniwersytetu Wrocławskiego, Wrocław 2013, 247-252 (pod redakcją Witolda Więsława).

[5] Funkcjełub ci,agi funkcyjne o specjalnych własnościach, których konstrukcje zawdzięczamy polskim matematykom, Antiquitates Mathematicae 9(1) (2015), 67-82.

Nekrologi:

[1] Wspomnienie o profesorze Tadeuszu Świątkowskim, Zeszyty Naukowe P L 719, Matematyka, z. 19, 1995. 7-11 wersja polska, 13-16 wersja angielska (co-author B. Koszela)

[2] Tadeusz Świątkowski – z żałobnej karty, Wiadomości Matematyczne, (co-author B. Koszela).

[3] Zygmunt Zahorski – An Obituary, Real Analysis Exchange (359-361, pomyłkowo jako Autor podany jest Zygmunt Zahorski, współautor (szlif językowy) – prawdopodobnie P. Humkełub C. Weil).

[4] Matematyk niepospolity (wspomnienie o prof. Zygmuncie Zahorskim), Kronika UŁ 5 (52), listopad 1998, 20-21.

życiorysy:

[1] Professor Jan Stanisław Lipiński, Reports on Real Analysis, Conference at Rowy 2003, 21-26.

[2] Jan Lipiński – our teacher, Traditional and present-day topics in real analysis, Dedicated to Professor Jan Stanisław Lipiński, Wydawnictwo UŁ, 2013, p. 27- 28. Editors M. Filipczak and E. Wagner-Bojakowska.

[3] Zygmunt Zahorski and contemporary real analysis, Monograph on the occasion of 100th birthday anniversary of Zygmunt Zahorski, Wydawnicwo Politechniki Śląskiej, Gliwice 2015, pp. 99-108. Editors: R.Wituła, D. Słota,W. Hałubowski.

Różne

[1] Doskonałość w matematyce, O doskonałości, Materiały z konferencji 21-23 maja 2001 r., Część I, Archidiecezjalne Wydawnictwo Łódzkie, Łódź 2002, 57-65.

[2] Matematyk z autorytetem, Autorytety i normy, Materiały z konferencji 13-15 maja 2002 r., Archidiecezjalne Wydawnictwo Łódzkie, Łódź 2003, 507-510.

[3] Matematyka – piękno czy koszmar, Piękno duchowe. Piękno materialne, Materiały z konferencji 19-21 maja 2003 r., Archidiecezjalne Wydawnictwo Łódzkie, Łódź 2004, 741-746.

[4] Osobliwa osobowość matematyka, Osoba i osobowość, Materiały z konferencji 9-11 maja 2005 r., Archidiecezjalne Wydawnictwo Łódzkie, Łódź 2006, 445-450.

[5] Sztuka kompromisu. Pogranicze matematyki i rzeczywistości, Pogranicza, Materiały z konferencji 8-10 maja 2006 r., Archidiecezjalne Wydawnictwo Łódzkie, Łódź 2007, 731-735.

[6] Wygoda i niewygoda tradycji, Materiały z konferencji Tradycja a nowoczesność, Archidecezjalne Wydawnictwo Łódzkie, Łódź 2008, 49-54.

[7] Skąd się biorą problemy?, Materiały z konferencji Tajemnice rozwoju, Archidiecezjalne Wydawnictwo Łódzkie; Łódź 2009; 585-590.

[8] Od nieskończenie małych do nieskończenie wielkich, Materiały z konferencji Ilość–wielkość–wartość, Archidiecezjalne Wydawnictwo Łódzkie; Łódź 2010; 529-534.

[9] Matematyka – język uniwersalny, Materiały z konferencji Naród. Religia. Język, Archidiecezjalne Wydawnictwo Łódzkie; Łódź 2011; 443-447.

[10] Od Pitagorasa do Erd¨osa, Materiały z konferencji Mistrz i Uczeń: Zbiór Studiów. Archidiecezjalne Wydawnictwo Łódzkie; Łódź 2013; 77-82

 

 

dr hab. Małgorzata Filipczak

  1. M. Filipczak, G. Ivanova, J. Wódka, Compaision on some families in porosity terms, Math. Slovaca 67 (5) (2017), 1155-1164.
  2. M. Balcerzak, M. Filipczak, Ideal convergence of sequences and some of its applications, Folia Mathematica 19 (1) (2017), 3-8.
  3. Bartoszewicz, Artur; Filipczak, Małgorzata, Remarks on sets with small differences andłarge sums. J. Math. Anal. Appl. 456 (2017), no. 1, 245–250.
  4. M. Filipczak, M. Terepeta, Some remarks on similar topologies, Bulletin deła Societe des Sciences et des Lettres de Łódź. Série: Recherches sur les Déformations LXVI (3) (2016), 39-46.
  5. Filipczak, Małgorzata, Filipczak, Tomasz, Some algebraic properties of finite binary sequences. Tatra Mt. Math. Publ. 65 (2016), 93–104.
  6. Filipczak, M.; Filipczak, T.; Horbaczewska, G.; Wilczyński, W. Remarks on exceptional points and differentiation bases. Acta Math. Hungar. 148 (2016), no. 2, 370–385.
  7. M. Filipczak, M. Terepeta, Continuity connected with ψ-density, chapter 4 in Modern Real Analysis, Wydawnictwo Uniwersytetu Łódzkiego 2015, 45-60.
  8. Banakh, Taras; Bartoszewicz, Artur; Filipczak, Małgorzata; Szymonik, Emilia Topological and measure properties of some self-similar sets. Topol. Methods Nonlinear Anal. 46 (2015), no. 2, 1013–1028.
  9. Balcerzak, M.; Das, P.; Filipczak, M.; Swaczyna, J. Generalized kinds of density and the associated ideals. Acta Math. Hungar. 147 (2015), no. 1, 97–115.
  10. Filipczak, Małgorzata; Terepeta, Małgorzata, Similarity and topologies generated by iterations of functions. Monograph on the occasion of 100th birthday anniversary of Zygmunt Zahorski, 125–140, Wydaw. Politech. Śl., Gliwice, 2015.
  11. Bartoszewicz, Artur; Filipczak, Małgorzata; Szymonik, Emilia, Multigeometric sequences and Cantorvals. Cent. Eur. J. Math. 12 (2014), no. 7, 1000–1007.
  12. Bartoszewicz, Artur; Filipczak, Małgorzata; Kowalski, Andrzej; Terepeta, Małgorzata, On similarity between topologies. Cent. Eur. J. Math. 12 (2014), no. 4, 603–610.
  13. Bartoszewicz, Artur; Bienias, Marek; Filipczak, Małgorzata; Gła̧b, Szymon, Strong c-algebrability of strong Sierpiński-Zygmund, smooth nowhere analytic and other sets of functions. J. Math. Anal. Appl. 412 (2014), no. 2, 620–630.
  14. Filipczak, Małgorzata; Filipczak, Tomasz, Density type topologies generated by functions. Properties of f-density. Traditional and present-day topics in real analysis, 411–430, Faculty of Mathematics and Computer Science. University of Łódź, Łódź, 2013.
  15. Filipczak, Małgorzata; Terepeta, Małgorzata, On ψ-density topologies on the real line and on the plane. Traditional and present-day topics in real analysis, 367–387, Faculty of Mathematics and Computer Science. University of Łódź, Łódź, 2013.
  16. Bartoszewicz, Artur; Filipczak, Małgorzata; Prus-Wiśniowski, Franciszek, Topological and algebraic aspects of subsums of series. Traditional and present-day topics in real analysis, 345–366, Faculty of Mathematics and Computer Science. University of Łódź, Łódź, 2013.
  17. Filipczak, Małgorzata; Terepeta, Małgorzata, The scientific family of Professor Jan Lipiński. Traditional and present-day topics in real analysis, 35–38, Faculty of Mathematics and Computer Science. University of Łódź, Łódź, 2013.
  18. Balcerzak, Marek; Bartoszewicz, Artur; Filipczak, Małgorzata, Nonseparable spaceability and strong algebrability of sets of continuous singular functions. J. Math. Anal. Appl. 407 (2013), no. 2, 263–269.
  19. Filipczak, Małgorzata; Filipczak, Tomasz, On Δ2 condition for density-type topologies generated by functions. Topology Appl. 159 (2012), no. 7, 1838–1846.
  20. Filipczak, Małgorzata Indexed ; Terepeta, Małgorzata, On (Δ2) condition in density-type topologies. Demonstratio Math. 44 (2011), no. 2, 423–432.
  21. Bartoszewicz, Artur; Filipczak, Małgorzata; Poreda, Tadeusz, Densities generated by equivalent measures. Math. Slovaca 61 (2011), no. 5, 733–746.
  22. Filipczak, Małgorzata; Wilczyński, Władysław, Strict density topology on the plane. Measure case. Rend. Circ. Mat. Palermo (2) 60 (2011), no. 1-2, 113–124.
  23. Bartoszewicz, Artur; Filipczak, Małgorzata; Natkaniec, Tomasz, On Smital properties. Topology Appl. 158 (2011), no. 15, 2066–2075.
  24. Filipczak, Małgorzata; Filipczak, Tomasz, On the comparison of density type topologies generated by functions. Real Anal. Exchange 36 (2010/11), no. 2, 341–351.
  25. Reviewed Filipczak, Małgorzata; Wilczyński, Władysław, Strict density topology of the plane. Category case. Tatra Mt. Math. Publ. 46 (2010), 55–64.
  26. Małgorzata; Filipczak, Tomasz, On homeomorphisms of density type topologies generated by functions. Tatra Mt. Math. Publ. 46 (2010), 7–13.
  27. Bartoszewicz, Artur; Filipczak, Małgorzata; Poreda, Tadeusz, On density with respect to equivalent measures. Demonstratio Math. 43 (2010), no. 1, 21–28.
  28. Filipczak, Małgorzata; Filipczak, Tomasz, On the comparison of the density type topologies generated by sequences and by functions. Comment. Math. 49 (2009), no. 2, 161–170.
  29. , Małgorzata; Terepeta, Małgorzata, ψ-continuous functions and functions preserving ψ-density points. Tatra Mt. Math. Publ. 42 (2009), 175–186.
  30. Filipczak, Małgorzata; Wagner-Bojakowska, Elżbieta, Remarks on small sets on the real line. Tatra Mt. Math. Publ. 42 (2009), 73–80.
  31. Filipczak, Małgorzata; Terepeta, Małgorzata, ψ-continuous functions. Rend. Circ. Mat. Palermo (2) 58 (2009), no. 2, 245–255.
  32. Filipczak, Małgorzata; Filipczak, Tomasz, On f-density topologies. Topology Appl. 155 (2008), no. 17-18, 1980–1989.
  33. Filipczak, Małgorzata; Filipczak, Tomasz, Density topologies generated by functions and by sequences. Tatra Mt. Math. Publ. 40 (2008), 103–115.
  34. Filipczak, Małgorzata; Wagner-Bojakowska, Elżbieta, The interior operation in f-density topology. Tatra Mt. Math. Publ. 35 (2007), 51–64.
  35. Filipczak, Małgorzata; Filipczak, Tomasz, Remarks on f-density and ψ-density. Tatra Mt. Math. Publ. 34 (2006), part I, 141–149.
  36. Filipczak, Małgorzata; Filipczak, Tomasz, A generalization of the density topology. Tatra Mt. Math. Publ. 34 (2006), part I, 37–47.
  37. Filipczak, Małgorzata; Terepeta, Małgorzata, On continuity concerned with ψ-density topologies. Tatra Mt. Math. Publ. 34 (2006), part I, 29–36.
  38. Hejduk, Jacek; Wilczyński, Władysław, On homeomorphisms of the density type topologies. Comment. Math. (Prace Mat.) 45 (2005), no. 2, 151–159.
  39. Filipczak, Małgorzata, ψ-density topology is not regular. Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 43 (2004), 21–25.
  40. Filipczak, Małgorzata; Filipczak, Tomasz; Hejduk, Jacek, On the comparison of the density type topologies. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), no. 1, 37–46 (2005).
  41. Filipczak, Małgorzata, Families of ψ-approximately continuous functions. Tatra Mt. Math. Publ. 28 (2004), part II, 219–225.
  42. Filipczak, Małgorzata; Hejduk, Jacek, On topologies associated with the Lebesgue measure. Tatra Mt. Math. Publ. 28 (2004), part II, 187–197.
  43. Filipczak, Małgorzata, On middle-size sets. Atti Sem. Mat. Fis. Univ. Modena 51 (2003), no. 2, 407–414.
  44. Filipczak, Małgorzata, σ-ideals, topologies and multiplication. Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 36 (2002), 11–16.
  45. Filipczak, Malgorzata; Hejduk, Jacek, On some extensions of σ-finite measures. Math. Pannon. 13 (2002), no. 2, 287–292.
  46. Filipczak, Małgorzata; Filipczak, Tomasz, Monotonicity theorems for -strong porosity topology. Atti Sem. Mat. Fis. Univ. Modena 50 (2002), no. 1, 187–194.
  47. Filipczak, Małgorzata A σ-ideal and multiplication. Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 30 (2000), 5–10.
  48. Filipczak, Małgorzata, On Foran’s sequence conditions. Real functions. Tatra Mt. Math. Publ. 14 (1998), 233–239
  49. Filipczak, Małgorzata, Some remarks on Foran’s sequence conditions. Real functions ’94 (Liptovský Ján, 1994). Tatra Mt. Math. Publ. 8 (1996), 143–146.
  50. Filipczak, Małgorzata, A.e. slowly varying and I-a.e. slowly varying functions. Zeszyty Nauk. Politech. Łódz. Mat. No. 27 (1995), 23–39.
  51. Filipczak, Małgorzata, Two theorems on measurable sets and sets having the Baire property. Czechoslovak Math. J. 42(117) (1992), no. 4, 631–634.
  52. Filipczak, Małgorzata, A note on intersections of certain topologies on R. Acta Univ.łodz. Folia Math. No. 4 (1991), 37–40.
  53. Filipczak, M.; Filipczak, T., On some topology related to metric density. Rad. Mat. 4 (1988), no. 2, 299–307.
  54. Filipczak, Małgorzata, On generators for Borel sets. Real Anal. Exchange 13 (1987/88), no. 1, 194–203.

 

dr hab. Jacek Hejduk

  1. K. Flak, J. Hejduk, S.Tomczyk, „On some density topology with respect an extension of Lebesgue measure”, Tatra Mount.Publ. 68 (2017), 1–9.
  2. J. Hejduk, W. Wilczyński, W.Wojdowski, „On semiregularization of the density – type topologies”, Bull. Soc. Sci. Lettres Łódz, vol. LXVI (2016) 91–103.
  3. Górajska, Magdalena; Hejduk, Jacek, On the structure of the pointwise density sets on the real line.Filomat 30 (2016), no. 11, 2893–2899.
  4. Hejduk, Jacek; Loranty, Anna; Wiertelak, Renata, On J-continuous functions.Tatra Mt. Math. Publ. 65 (2016), 49–59.
  5. Hejduk, Jacek; Wiertelak, Renata; Wojdowski, Wojciech, On semiregularization of some abstract density topologies involving sets having the Baire property.Tatra Mt. Math. Publ.65 (2016), 37–48.
  6. Hejduk, Jacek; Loranty, Anna; Wiertelak, Renata, J-approximately continuous functions. Tatra Mt. Math. Publ. 62 (2015), 45–55.
  7. K. Flak, J. Hejduk, On equivalence of topological and restrictional continuity, Modern Real Analysis, 61–68, Faculty of Mathematics and Computer Science.University of Łódz, 2015.
  8. Hejduk, Jacek, On topologies in the family of sets with the Baire property. Georgian Math. J. 22 (2015), no. 2, 243–250.
  9. Hejduk, Jacek; Loranty, Anna; Wiertelak, Renata, On density points on the real line with respect to sequences tending to zero. Monograph on the occasion of 100th birthday anniversary of Zygmunt Zahorski, 141–154, Wydaw. Politech. Śl., Gliwice, 2015.
  10. Hejduk, Jacek; Wiertelak, Renata, On the generalization of density topologies on the real line. Math. Slovaca 64 (2014), no. 5, 1267–1276.
  11. Hejduk, Jacek, On the regularity of topologies in the family of sets having the Baire property. Filomat 27 (2013), no. 7, 1291–1295.
  12. Hejduk, Jacek; Wiertelak, Renata, On the abstract density topologies generated byłower and almostłower density operators. Traditional and present-day topics in real analysis, 431–447, Faculty of Mathematics and Computer Science. University of Łódź, Łódź, 2013.
  13. Górajska, Magdalena; Hejduk, Jacek, Pointwise density topology with respect to admissible σ-algebras. Tatra Mt. Math. Publ. 55 (2013), 77–83.
  14. Flak, Katarzyna; Hejduk, Jacek, On topologies generated by some operators. Cent. Eur. J. Math. 11 (2013), no. 2, 349–356.
  15. Hejduk, Jacek; Loranty, Anna, Remarks on the topologies in the Lebesgue measurable sets. Demonstratio Math. 45 (2012), no. 3, 655–663.
  16. J. Hejduk, ”On the abstract density topologies” – selected papers of the 2010 International Conference on Topology and its Application, (2012), 79–85.
  17. Hejduk, Jacek; Flak, Katarzyna, On the universal σ-ideals. Real functions, density topology and related topics, 77–82, Łódź Univ. Press, Łódź, 2011.
  18. Hejduk, Jacek, One more difference between measure and category. Tatra Mt. Math. Publ. 49 (2011), 9–15.
  19. Hejduk, Jacek; Wiertelak, Renata, Continuous functions in I(J)-density topologies. Real Anal. Exchange 36 (2010/11), no. 2, 463–469.
  20. Hejduk, Jacek, On the density topologies generated by functions. Tatra Mt. Math. Publ. 40 (2008), 133–141.
  21. J. Hejduk, ”Remarks on the density topologies generated by functions” – Słupskie Prace Matematyczno- Fizyczne No. 4 (2007), 39–46.
  22. Hejduk, Jacek; Loranty, Anna, On lower and semi-lower density operators. Georgian Math. J. 14 (2007), no. 4, 661–671
  23. Hejduk, Jacek, On the cardinality size of the homeomorphic density type topologies. Tatra Mt. Math. Publ. 34 (2006), part I, 135–139.
  24. Filipczak, Małgorzata; Hejduk, Jacek; Wilczyński, Władysław, On homeomorphisms of the density type topologies. Comment. Math. (Prace Mat.) 45 (2005), no. 2, 151–159.
  25. Filipczak, Małgorzata; Filipczak, Tomasz; Hejduk, Jacek, On the comparison of the density type topologies. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), no. 1, 37–46.
  26. Filipczak, Małgorzata; Hejduk, Jacek, On topologies associated with the Lebesgue measure. Tatra Mt. Math. Publ. 28 (2004), part II, 187–197.
  27. J. Hejduk, G. Horbaczewska ”On I-density topology with respect to a fixed sequence” – Reports on Real Analysis, Słupsk (2003), 78–85.
  28. M. Filipczak, J. Hejduk, ”On the density type topologies on the real line” – Real Analysis Exchange, 27th Symposium Report, (2003), 157–160, (komunikat).
  29. Hejduk, J., On density topologies with respect to invariant σ-ideals. J. Appl. Anal. 8 (2002), no. 2, 201–219.
  30. Hejduk, Jacek; Lindner, Sebastian, On the Hashimoto topology with respect to an extension of the Lebesgue measure. Tatra Mt. Math. Publ. 24 (2002), part II, 147–151.
  31. Filipczak, Malgorzata; Hejduk, Jacek, On some extensions of σ-finite measures. Math. Pannon. 13 (2002), no. 2, 287–292.
  32. Hejduk, Jacek, On the Peano derivatives of functions having the Baire property. Demonstratio Math. 31 (1998), no. 3, 663–668.
  33. Hejduk, Jacek, Some properties of the density topology with respect to an extension of the Lebesgue measure. Math. Pannon. 9 (1998), no. 2, 173–180.
  34. Hejduk, Jacek, Convergence with respect to Fσ-supported ideals. Colloq. Math. 72 (1997), no. 2, 363–368.
  35. J. Hejduk, ”Density topologies with respect to invariant σ-ideals” – Wydawnictwo Uniwersytetu Łódzkiego,Łódz 1997.
  36. J. Hejduk, ”On abstract density on the real line” – Real Analysis Exchange 22 (1) (1996-97), 15–17 (komunikat).
  37. Hejduk, J., Non-Baire unions in category bases. Georgian Math. J. 3 (1996), no. 6, 543–546. (Reviewer: Péter Komjáth) 28A05 (04A15).
  38. Hejduk, Jacek, On the density topology with respect to an extension of Lebesgue measure. Real Anal. Exchange 21 (1995/96), no. 2, 811–816.
  39. Hejduk, Jacek; Kharazishvili, Aleksander, On density topologies generated by ideals. Acta Univ.łodz. Folia Math. No. 7 (1995), 51–62.
  40. Hejduk, J.; Kharazishvili, A., On density points with respect to von Neumann’s topology. Real Anal. Exchange 21 (1995/96), no. 1, 278–291.
  41. Hejduk, Jacek, Convergence with respect to the σ-ideal of meager sets in separable category bases. Demonstratio Math. 28 (1995), no. 3, 619–623.
  42. Hejduk, Jacek, On Lusin’s theorem in the aspect of small systems. Demonstratio Math. 28 (1995), no. 1, 107–110.
  43. Balcerzak, Marek; Hejduk, Jacek; Wilczyński, Władysław; Wroński, Stanisław, Why only measure and category? Zeszyty Nauk. Politech. Łódz. Mat. No. 26 (1994), 89–94.
  44. Balcerzak, M.; Hejduk, J., Density topologies for products of σ-ideals. Real Anal. Exchange 20 (1994/95), no. 1, 163–177.
  45. J. Hejduk, ”On non-Baire sets”- Real Analysis Exchange 20 (2) (1994-95), 452–453, (komunikat).
  46. Hejduk, Jacek, The convergence of multi-index sequences of Baire functions. Acta Univ.łodz. Folia Math. No. 5 (1992), 31–38 (1993).
  47. Hejduk, Jacek, Non-Baire sets in category bases. Real Anal. Exchange 18 (1992/93), no. 2, 448–452.
  48. J. Hejduk, ”Non – Baire sets in category bases” – Real Analysis Exchange 17 (1) (1991-92), 48–49,(komunikat).
  49. Hejduk, Jacek, Convergence with respect to some σ-ideals. Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 21 (1991), no. 1, 157–164.
  50. Hejduk, Jacek; Wajch, Eliza, A characterization of compactness in the sense of convergence with respect to a σ-ideal. Rad. Mat.7 (1991), no. 1, 5–9.
  51. Hejduk, Jacek, Some remarks on Egoroff’s theorem. Acta Univ.łodz. Folia Math. No. 4 (1991), 41–50.
  52. J. Hejduk, ”Some remarks on Lusin theorem in the abstract sense”- XXXV semester in Banach–Center, December 1990, 2–8.
  53. Hejduk, Jacek, Some properties of topological σ-ideals. Demonstratio Math. 22 (1989), no. 4, 1183–1189 (1990).
  54. Hejduk, Jacek, Universal sequences in the space of real measurable functions. Zeszyty Nauk. Politech. Łódz. Mat. No. 21 (1989), 75–85 (1990).
  55. Hejduk, Jacek, Convergence with respect to the Mycielski σ-ideal. Demonstratio Math. 22 (1989), no. 1, 43–50.
  56. Reviewed Hejduk, Jacek; Wajch, Eliza, Compactness in the sense of the convergence with respect to a small system. Math. Slovaca 39 (1989), no. 3, 267–275.
  57. Balcerzak, M.; Hejduk, J.; Baumgartner, J. E., On certain σ-ideals of sets. Real Anal. Exchange 14 (1988/89), no. 2, 447–453.
  58. Hejduk, Jacek, On σ-ideal generated by two totally imperfect σ-ideals. Rad. Mat. 3 (1987), no. 2, 229–233.
  59. Hejduk, Jacek, Some properties of subsets of Rk with the Baire property. Acta Univ.łodz. Folia Math. No. 1 (1984), 25–33.

 

dr hab. Elżbieta Wagner-Bojakowska

  1. Karasińska, Aleksandra; Paszkiewicz, Adam; Wagner-Bojakowska, Elżbieta; A generalization of the notion of microscopic sets. Lith. Math. J. 57 (2017), no. 3, 319–330.
  2. Ivanova, Gertruda; Karasińska, Aleksandra; Wagner-Bojakowska, Elżbieta; Comparison of some subfamilies of functions having the Baire property. Tatra Mt. Math. Publ. 65 (2016), 151–159.
  3. Paszkiewicz, Adam; Wagner-Bojakowska, Elżbieta; Fubini property for microscopic sets. Tatra Mt. Math. Publ. 65 (2016), 143–149.
  4. Ivanova, Gertruda; Wagner-Bojakowska, Elżbieta; On some modification of Darboux property. Math. Slovaca 66 (2016), no. 1, 79–88.
  5. Karasińska, Aleksandra; Wagner-Bojakowska, Elżbieta; (BI,I)-saturated sets and Hamel basis. Tatra Mt. Math. Publ. 62 (2015), 143–150.
  6. Wagner-Bojakowska, Elżbieta; Wilczyński, Władysław; Wojdowski, Wojciech; Density topology involving microscopic sets and category. Tatra Mt. Math. Publ. 62 (2015), 113–132.
  7. Wagner-Bojakowska, Elżbieta; Wilczyński, Władysław; Density topologies on the plane between ordinary and strong. II. Tatra Mt. Math. Publ. 62 (2015), 13–25.
  8. Ivanova, Gertruda; Wagner-Bojakowska, Elżbieta; On some subfamilies of Darboux quasi-continuous functions. Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 64 (2014), no. 3, 31–43.
  9. Ivanova, Gertruda; Wagner-Bojakowska, Elżbieta; On some subclasses of the family of Darboux Baire 1 functions. Opuscula Math. 34 (2014), no. 4, 777–788.
  10. Karasińska, A.; Wagner-Bojakowska, E.; Microscopic and strongly microscopic sets on the plane. Fubini theorem and Fubini property. Demonstr. Math. 47 (2014), no. 3, 581–594.
  11. Ivanova, Gertruda; Wagner-Bojakowska, Elżbieta; On some modification of Świa̧tkowski property. Tatra Mt. Math. Publ. 58 (2014), 101–109.
  12. Karasińska, Aleksandra; Wagner-Bojakowska, Elżbieta; On some problem of Sierpiński and Ruziewicz concerning the superposition of measurable functions. Microscopic Hamel basis. Tatra Mt. Math. Publ. 58 (2014), 91–99.
  13. Horbaczewska, Grażyna; Karasińska, Aleksandra; Wagner-Bojakowska, Elżbieta; Properties of the σ-ideal of microscopic sets. Traditional and present-day topics in real analysis, 325–343, Faculty of Mathematics and Computer Science. University of Łódź, Łódź, 2013.
  14. Wagner-Bojakowska, Elżbieta; Wilczyński, Władysław; Convergence of sequences of measurable functions. Traditional and present-day topics in real analysis, 55–67, Faculty of Mathematics and Computer Science. University of Łódź, Łódź, 2013.
  15. Karasińska, A.; Wagner-Bojakowska, E.; Homeomorphisms of linear and planar sets of the first category into microscopic sets. Topology Appl. 159 (2012), no. 7, 1894–1898.
  16. Karasińska, Aleksandra; Poreda, Wiesława; Wagner-Bojakowska, Elżbieta; Duality principle for microscopic sets. Real functions, density topology and related topics, 83–87, Łódź Univ. Press, Łódź, 2011.
  17. Karasińska, Aleksandra; Wagner-Bojakowska, Elżbieta; Some remarks on ρ-upper continuous functions. Tatra Mt. Math. Publ.46 (2010), 85–89.
  18. Karasińska, Aleksandra; Wagner-Bojakowska, Elżbieta; Some remarks on nowhere monotone functions. Folia Math. 16 (2009), no. 1, 21–23.
  19. Wagner-Bojakowska, Elżbieta; Wilczyński, Władysław; Density topologies on the plane between ordinary and strong. Tatra Mt. Math. Publ. 44 (2009), 139–151.
  20. Filipczak, Małgorzata; Wagner-Bojakowska, Elżbieta; Remarks on small sets on the real line. Tatra Mt. Math. Publ. 42 (2009), 73–80.
  21. Karasińska, A.; Wagner-Bojakowska, E.; Nowhere monotone functions and microscopic sets. Acta Math. Hungar. 120 (2008), no. 3, 235–248.
  22. Filipczak, Małgorzata; Wagner-Bojakowska, Elżbieta; The interior operation in f-density topology. Tatra Mt. Math. Publ. 35 (2007), 51–64.
  23. Wagner-Bojakowska, Elżbieta; Wilczyński, Władysław; Density topologies connected with Hausdorff measures. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 53 (2005), no. 1, 207–213.
  24. Horbaczewska, Grażyna; Wagner-Bojakowska, Elżbieta; Relative density topologies. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), no. 1, 19–32 (2005).
  25. Wagner-Bojakowska, Elżbieta; Wilczyński, Władysław; The union of ψ-density topologies. Atti Sem. Mat. Fis. Univ. Modena 50 (2002), no. 2, 313–326.
  26. Wagner-Bojakowska, Elżbieta; Remarks on convergence in category. Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 34 (2001), 65–71.
  27. Horbaczewska, G.; Wagner-Bojakowska, E.; Some modifications of density topologies. J. Appl. Anal. 7 (2001), no. 1, 91–105.
  28. Wagner-Bojakowska, Elżbieta; Remarks on ψ-density topology. Atti Sem. Mat. Fis. Univ. Modena 49 (2001), no. 1, 79–87.
  29. Wagner-Bojakowska, Elżbieta; Wilczyński, Władysław; The interior operation in a ψ-density topology. Rend. Circ. Mat. Palermo (2) 49 (2000), no. 1, 5–26.
  30. Wagner-Bojakowska, Elżbieta; Wilczyński, Władysław; Cauchy condition for the convergence in category. Proc. Amer. Math. Soc. 128 (2000), no. 2, 413–418.
  31. Wagner-Bojakowska, Elżbieta; Wilczyński, Władysław; Comparison of ψ-density topologies. Real Anal. Exchange 25 (1999/00), no. 2, 661–672.
  32. Terepeta, Malgorzata; Wagner-Bojakowska, Elzbieta; ψ-density topology. Rend. Circ. Mat. Palermo (2) 48 (1999), no. 3, 451–476.
  33. f real functions. Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 26 (1998), 11–21.
  34. Wagner-Bojakowska, Elżbieta; Wilczyński, Władysław; Separation axioms for some modifications of the core topology. Atti Sem. Mat. Fis. Univ. Modena 46 (1998), no. 2, 361–370.
  35. Wagner-Bojakowska, Elżbieta; Wilczyński, Władysław; Approximate core-a.e. topology. Zeszyty Nauk. Politech. Łódz. Mat. No. 27 (1995), 129–138.
  36. Wagner-Bojakowska, Elżbieta; Wilczyński, Władysław; Approximate core topologies. Real Anal. Exchange 20 (1994/95), no. 1, 192–203.
  37. Wagner-Bojakowska, Elżbieta; Rotation invariant density topologies on the plane. Atti Sem. Mat. Fis. Univ. Modena 42 (1994), no. 1, 289–316.
  38. Wagner-Bojakowska, Elżbieta; Some remarks on density topologies on the plane. Real Anal. Exchange 18 (1992/93), no. 2, 339–342.
  39. Wagner-Bojakowska, Elżbieta; Remarks on convergence of sequences of measurable functions. Acta Univ.łodz. Folia Math. No. 4 (1991), 173–179.
  40. Wagner-Bojakowska, E.; On a theorem of Banach concerning periodic functions. Real Anal. Exchange 13 (1987/88), no. 2, 363–372
  41. Wagner-Bojakowska, E.; Poreda, W.; The topology of I-approximately continuous functions. Rad. Mat. 2 (1986), no. 2, 263–277.
  42. Poreda, W.; Wagner-Bojakowska, E.; Wilczyński, W.; Remarks on I-density and I-approximately continuous functions. Comment. Math. Univ. Carolin. 26 (1985), no. 3, 553–563.
  43. Poreda, W.; Wagner-Bojakowska, E.; Wilczyński, W.; A category analogue of the density topology. Fund. Math. 125 (1985), no. 2, 167–173.
  44. Wagner-Bojakowska, Elżbieta; The measurable boundaries of a real function. Ricerche Mat. 33 (1984), no. 1, 113–119.
  45. Wagner-Bojakowska, Elżbieta; Wilczyński, Władysław; Transfinite sequences of continuous functions. Zeszyty Nauk. Politech. Łódz. Mat. No. 16 (1983), 17–24.
  46. Wagner-Bojakowska, Elżbieta; Wilczyński, Władysław; Remarks on the convergence in measure. Zeszyty Nauk. Politech. Łódz. Mat. No. 16 (1983), 7–10.
  47. Wagner-Bojakowska, Elżbieta; On the convergence with respect to the σ-ideal. Ann. Univ. Sci. Budapest. Eötvös Sect. Math.25 (1982), 203–208.
  48. Wagner, Elżbieta; Wilczyński, Władysław; Convergence almost everywhere of sequences of measurable functions. Colloq. Math.45 (1981), no. 1, 119–124 (1982).
  49. Wagner, Elżbieta; Wilczyński, Władysław; Spaces of measurable functions. Rend. Circ. Mat. Palermo (2)30 (1981), no. 1, 97–110
  50. Wagner, Elżbieta; Sequences of measurable functions. Fund. Math.112 (1981), no. 2, 89–102.
  51. Wagner, Elżbieta; Wilczyński, Władysław; Convergence structure in the set of measurable functions. Proceedings of the Conference on Convergence (Szczyrk, 1979), pp. 100–109, Polsk. Akad. Nauk, Oddział Katowicach, Katowice, 1980.
  52. Wagner, E.; Wilczyński, W.; Convergence of sequences of measurable functions. Acta Math. Acad. Sci. Hungar.36 (1980), no. 1-2, 125–128.
  53. Wagner, Elzbieta; Convergence in category. Rend. Accad. Sci. Fis. Mat. Napoli (4)45 (1978), 303–312 (1979).

 

dr hab. Grażyna Horbaczewska

 

  1. Horbaczewska, Grażyna; Lindner, Sebastian; Resolvability of measurable spaces. Bull. Aust. Math. Soc. 94 (2016), no. 1, 70–79.
  2. Filipczak, M.; Filipczak, T.; Horbaczewska, G.; Wilczyński, W., Remarks on exceptional points and differentiation bases. Acta Math. Hungar. 148 (2016), no. 2, 370–385.
  3. Horbaczewska, Grażyna, Resolvability of abstract density topologies in Rn generated byłower or almostłower density operators. Tatra Mt. Math. Publ. 62 (2015), 175–181.
  4. Horbaczewska, Grażyna, Microscopic sets with respect to sequences of functions. Tatra Mt. Math. Publ. 58 (2014), 137–144.
  5. Horbaczewska, Grażyna; Karasińska, Aleksandra; Wagner-Bojakowska, Elżbieta, Properties of the σ-ideal of microscopic sets. Traditional and present-day topics in real analysis, 325–343, Faculty of Mathematics and Computer Science. University of Łódź, Łódź, 2013.
  6. Horbaczewska, Grażyna, Sparse sets on the plane and density points defined by families of sequences. Bull. Aust. Math. Soc. 86 (2012), no. 2, 282–290.
  7. Horbaczewska, Grażyna; Wilczyński, Władysław, A difference between the sets of ordinary and strong density points on the plane. Math. Slovaca 62 (2012), no. 4, 805–813.
  8. Horbaczewska, Grażyna, On the comparison of the density type topologies generated by sequences on the plane. Real functions, density topology and related topics, 37–44, Łódź Univ. Press, Łódź, 2011.
  9. Horbaczewska, Grażyna, On the density type topologies in higher dimensions. Bull. Aust. Math. Soc. 83 (2011), no. 1, 158–170.
  10. Horbaczewska, Grażyna, The set of discontinuities of density-type-approximately continuous functions. Tatra Mt. Math. Publ. 44 (2009), 115–127.
  11. Horbaczewska, Grażyna, On strongly countably continuous functions. Tatra Mt. Math. Publ. 42 (2009), 81–86.
  12. Horbaczewska, Grażyna; Skalski, Adam, The Banach principle for ideal convergence in the classical and noncommutative context. J. Math. Anal. Appl. 342 (2008), no. 2, 1332–1341.
  13. Horbaczewska, Grażyna, On topologies connected with Hausdorff measures. Real Anal. Exchange 33 (2008), no. 1, 151–158.
  14. Horbaczewska, Grazyna; Skalski, Adam, Banach principle for the ideal convergence. Real Anal. Exchange 2007, 31st Summer Symposium Conference, 21–25. 46L51
  15. Horbaczewska, Grażyna, On I-density topologies with respect to a fixed sequence—further properties. Tatra Mt. Math. Publ. 34 (2006), part I, 151–157.
  16. Horbaczewska, Grażyna, The family of I-density type topologies. Comment. Math. Univ. Carolin. 46 (2005), no. 4, 735–745.
  17. Horbaczewska, Grażyna; Wagner-Bojakowska, Elżbieta, Relative density topologies. Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), no. 1, 19–32 (2005).
  18. Horbaczewska, Grażyna; Wilczyński, Władysław, Topologies similar to the density topology. Atti Sem. Mat. Fis. Univ. Modena51 (2003), no. 2, 433–439.
  19. Horbaczewska, Grażyna, A note on I-density continuous functions. Folia Math. 10 (2003), no. 1, 11–21.
  20. Horbaczewska, Grażyna, Resolvability of ψ-density topology. Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 36 (2002), 5–9.
  21. Horbaczewska, G.; Wagner-Bojakowska, E., Some modifications of density topologies. J. Appl. Anal. 7 (2001), no. 1, 91–105.
  22. Horbaczewska, Grażyna, Some modifications of the core topology on the plane. Real Anal. Exchange 24 (1998/99), no. 1, 185–204.
  23. Horbaczewska, Grażyna, Remark on some theorem of Zajíček. Acta Univ.łodz. Folia Math. No. 7 (1995), 25–30.
  24. Horbaczewska, Grażyna; Wilczyński, Władysław, I-density continuous transformations on R2. Atti Sem. Mat. Fis. Univ. Modena42 (1994), no. 1, 279–287.

 

dr Aleksandra Karasińska

 

  1. A. Karasińska, A. Paszkiewicz, E. Wagner-Bojakowska, A generalization of the notion of microscopic sets, Lithuanian Mathematical Journal, Vol. 57, No. 3, July, 2017, pp. 319–330.
  2. Ivanova, Gertruda; Karasińska, Aleksandra, Darboux functions related to generalization of approximately continuity. Topology Appl. 226 (2017), 31–41.
  3. A. Karasińska, Duality Principle for some sigma-ideal of subsets of the real line,Bulletin deła Societe des Sciences et des Lettres de Łódź. Série: Recherches sur les Déformations 66 (3) (2016), 72-77
  4. A. Karasińska, S. Lindner, On special saturated sets,Bulletin deła Societe des Sciences et des Lettres de Łódź. Série: Recherches sur les Déformations 66 (3) (2016), 79-86
  5. Ivanova, Gertruda; Karasińska, Aleksandra; Wagner-Bojakowska, Elżbieta, Comparison of some subfamilies of functions having the Baire property.Tatra Mt. Math. Publ. 65 (2016), 151–159.
  6. Karasińska, Aleksandra; Wagner-Bojakowska, Elżbieta, (BI,I)-saturated sets and Hamel basis. Tatra Mt. Math. Publ. 62 (2015), 143–150.
  7. Karasińska, A.; Wagner-Bojakowska, E., Microscopic and strongly microscopic sets on the plane. Fubini theorem and Fubini property. Demonstr. Math. 47 (2014), no. 3, 581–594.
  8. Karasińska, Aleksandra; Wagner-Bojakowska, Elżbieta, On some problem of Sierpiński and Ruziewicz concerning the superposition of measurable functions. Microscopic Hamel basis. Tatra Mt. Math. Publ. 58 (2014), 91–99.
  9. Horbaczewska, Grażyna; Karasińska, Aleksandra; Wagner-Bojakowska, Elżbieta, Properties of the σ-ideal of microscopic sets. Traditional and present-day topics in real analysis, 325–343, Faculty of Mathematics and Computer Science. University of Łódź, Łódź, 2013.
  10. Karasińska, A.; Wagner-Bojakowska, E., Homeomorphisms of linear and planar sets of the first category into microscopic sets. Topology Appl. 159 (2012), no. 7, 1894–1898.
  11. Karasińska, Aleksandra; Poreda, Wiesława; Wagner-Bojakowska, Elżbieta, Duality principle for microscopic sets. Real functions, density topology and related topics, 83–87, Łódź Univ. Press, Łódź, 2011.
  12. Karasińska, Aleksandra; Wagner-Bojakowska, Elżbieta, Some remarks on ρ-upper continuous functions. Tatra Mt. Math. Publ.46 (2010), 85–89.
  13. Karasińska, Aleksandra; Wagner-Bojakowska, Elżbieta, Some remarks on nowhere monotone functions. Folia Math. 16 (2009), no. 1, 21–23
  14. Karasińska, Aleksandra, The one-to-one restrictions of functions. Tatra Mt. Math. Publ. 40 (2008), 161–169.
  15. Karasińska, A.; Wagner-Bojakowska, E., Nowhere monotone functions and microscopic sets. Acta Math. Hungar. 120 (2008), no. 3, 235–248.

 

 

dr Renata Wiertelak

  1. Strobin, Filip; Wiertelak, Renata; Algebrability of S-continuous functions, Topology and its Applications 231 (2017), 373-385.
  2. Hejduk, Jacek; Loranty, Anna; Wiertelak, Renata; On J-continuous functions. Tatra Mt. Math. Publ. 65 (2016), 49–59.
  3. Hejduk, Jacek; Wiertelak, Renata; Wojdowski, Wojciech; On semiregularization of some abstract density topologies involving sets having the Baire property. Tatra Mt. Math. Publ.65 (2016), 37–48.
  4. Strobin, Filip; Wiertelak, Renata; On a generalization of density topologies on the real line. Topology Appl.199 (2016), 1–16.
  5. Hejduk, Jacek; Loranty, Anna; Wiertelak, Renata; J-approximately continuous functions. Tatra Mt. Math. Publ.62 (2015), 45–55.
  6. Hejduk, Jacek; Loranty, Anna; Wiertelak, Renata; On density points on the real line with respect to sequences tending to zero. Monograph on the occasion of 100th birthday anniversary of Zygmunt Zahorski,141–154, Wydaw. Politech. Śl., Gliwice, 2015.
  7. Hejduk, Jacek; Wiertelak, Renata; On the generalization of density topologies on the real line. Math. Slovaca 64 (2014), no. 5, 1267–1276.
  8. Hejduk, Jacek; Wiertelak, Renata; On the abstract density topologies generated byłower and almostłower density operators. Traditional and present-day topics in real analysis, 431–447, Faculty of Mathematics and Computer Science. University of Łódź, Łódź, 2013.
  9. Wiertelak, Renata; On the deep K(J)-density topology. Georgian Math. J. 20 (2013), no. 4, 817–832.
  10. Wiertelak, Renata; About I(J)-approximately continuous functions.Period. Math. Hungar. 63 (2011), no. 1, 71–79.
  11. Hejduk, Jacek; Wiertelak, Renata; Continuous functions in I(J)-density topologies. Real Anal. Exchange 36 (2010/11), no. 2, 463–469.
  12. Wiertelak, Renata; A generalization of the density topology with respect to category. Real Anal. Exchange 32 (2006/07), no. 1, 273–286.

 

dr Rafał Zduńczyk

  1. Zduńczyk, Rafał, Simple Systems and Closure Operators, Bull. Sec. Sci. Lett. Łódź, Ser. Rech. Deform. 66 (2016), no. 3.
  2. Zduńczyk, Rafał, Sets with Small Differences and Big Sums in Finite Groups, rozdział w ,,Selected Problems on Experimental Mathematics”, Gliwice 2017, pp.149-166.
  3. Zduńczyk, Rafał, Simple systems and generalized topologies.Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 65 (2015), no. 1, 49–56.
  4. Zduńczyk, Rafał, Generalized discontinuity of real-valued functions. Tatra Mt. Math. Publ. 55 (2013), 1–16.
  5. Zduńczyk, Rafał, Local systems and some classes of operators. Real functions, density topology and related topics, 183–189, Łódź Univ. Press, Łódź, 2011.
  6. Zduńczyk, Rafał, Programowanie w VBA dla Excela, Wydawnictwo UŁ, 2012.
  7. Zduńczyk, Rafał, Unilateral I-approximate limits of real functions. Real Anal. Exchange 34 (2009), no. 1, 105–114.
  8. Zduńczyk, Rafał, On I-approximate and I-approximate smoothness. Comment. Math. (Prace Mat.) 46 (2006) no. 1, 1–16.

 

dr Katarzyna Flak

 

  1. Flak, Katarzyna; Hejduk, Jacek, On topologies generated by some operators. Cent. Eur. J. Math. 11 (2013), no. 2, 349–356.
  2. Hejduk, Jacek; Flak, Katarzyna, On the universal σ-ideals. Real functions, density topology and related topics, 77–82, Łódź Univ. Press, Łódź, 2011.
  3. Flak, Katarzyna; Łazarow, Ewa, The lattice generated by τ-quasicontinuous functions. Ric. Mat. 59 (2010), no. 1, 23–38.
  4. Flak, Katarzyna; Łazarow, Ewa; Maliszewski, Aleksander, Sums of TI-quasi-continuous functions. Tatra Mt. Math. Publ. 28 (2004), part I, 117–124.
  5. Flak, Katarzyna; Pawlak, Ryszard Jerzy; Świątek, Bożena, On some method for improving continuity, quasi-continuity and the Darboux property. Real Anal. Exchange 21 (1995/96), no. 2, 498–509.

 

dr Sebastian Lindner

  1. Horbaczewska, Grażyna; Lindner, Sebastian, Resolvability of measurable spaces. Bull. Aust. Math. Soc. 94 (2016), no. 1, 70–79.
  2. Lindner, Sebastian; Terepeta, Małgorzata, On the position of abstract density topologies in the lattice of all topologies. Filomat 30 (2016), no. 2, 281–286.
  3. A. Karasińska, S. Lindner, On special saturated sets,Bulletin deła Societe des Sciences et des Lettres de Łódź. Série: Recherches sur les Déformations 66 (3) (2016), 79-86
  4. Lindner, Sebastian, Resolvability properties of similar topologies. Bull. Aust. Math. Soc. 92 (2015), no. 3, 470–477.
  5. Lindner, Sebastian; Terepeta, Małgorzata, Algebrability within the class of Baire 1 functions. Lith. Math. J. 55 (2015), no. 3, 393–401.
  6. Lindner, Sebastian; Wilczyński, Władysław, On points of the regular density. Tatra Mt. Math. Publ. 52 (2012), 9–17.
  7. Lindner, Sebastian, Remark on the regular density on the plane. Real functions, density topology and related topics, 45–49, Łódź Univ. Press, Łódź, 2011.
  8. Lindner, Sebastian, The regular density on the plane. Ann. Univ. Paedagog. Crac. Stud. Math. 10 (2011), 79–87.
  9. Lindner, Monika; Lindner, Sebastian, Characterizations of some subclasses of the first class of Baire. Real Anal. Exchange 36 (2010/11), no. 2, 499–506
  10. Jachymski, Jacek; Lindner, Monika; Lindner, Sebastian, On Cauchy type characterizations of continuity and Baire one functions. Real Anal. Exchange 30 (2004/05), no. 1, 339–346.
  11. Lindner, Sebastian, Additional properties of the measure vf. Tatra Mt. Math. Publ. 28 (2004), part II, 199–205.
  12. Lindner, Sebastian, Topologies of Hashimoto type with respect to sigma-ideal of countable sets. Folia Math. 10 (2003), no. 1, 55–58.
  13. Hejduk, Jacek; Lindner, Sebastian, On the Hashimoto topology with respect to an extension of the Lebesgue measure. Tatra Mt. Math. Publ. 24 (2002), part II, 147–151.
  14. Lindner, Sebastian, Generalization of the Banach indicatrix theorem. Real Anal. Exchange 27 (2001/02), no. 2, 721–724.

 

doktoranci:

mgr Rafał Knapik

Knapik, Rafał, Remarks on round metric spaces.Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 65 (2015),