Publikacje Katedry Równań Różniczkowych i Informatyki

 

Dr Monika Bartkiewicz

  1. Bartkiewicz, Monika; Majewski, Marek; Walczak, Stanisław On 2D integro-differential systems. Stability and sensitivity analysis. Multidimens. Syst. Signal Process. 28 (2017), no. 4, 1679–1695.
  2. Bartkiewicz, M.; Walczak, S. Optimal control of systems with periodic and Dirichlet boundary conditions. EQUADIFF 2003, 569–574, World Sci. Publ., Hackensack, NJ, 2005.
  3. Monika Bartkiewicz, Ciągła zależność od parametrów rozwiązań układów periodycznych rzędu drugiego, XXXI Ogólnopolska Konferencja Zastosowań Matematyki, 17-Zakopane-Kościelisko 17-24.09.2002.
  4. Bartkiewicz, M. On the continuous dependence on parameters of solutions of the fourth order periodic problem. J. Appl. Anal. 7 (2001), no. 1, 113–130.
  5. Bartkiewicz, Monika On the continuous dependence on parameters of solutions of the second order periodic problem. Bulletin of the Belgian Mathematical Society 7 (2000), no. 4, 549–561.
  6. Bartkiewicz, Maria Information flow and customer servicing in a multiaccess information system. (Polish) Postępy Cybernet. 3 (1980), no. 3, 43–72.

Dr Dorota Bors

  1. Bors D. Stability of nonlinear Urysohn Integral Equations via Global Diffeomorphisms and Implicit Functions Theorems, Journal of Integral Equations and Applications, 27 (2015), pp. 343-366.
  2. Bors D., Skowron, A., Walczak S., Systems described by Volterra type integral operators, Discrete and Continuous Dynamical Systems B, 19 (2014), 2401-2416.
  3. Bors D., Stability of nonlinear Dirichlet BVPs governed by fractional Laplacian, The Scientific World Journal, 920537 (2014), pp. 10.
  4. Bors D., Global solvability of Hammerstein equations with applications to BVP involving fractional Laplacian, Abstract and Applied Analysis, 240863 (2013), pp. 10.
  5. Bors D., Majewski M., On the existence of an optimal solution of the Mayer problem governed by 2D continuous counterpart of the Fornasini-Marchesini model, Multidimensional Systems and Signal Processing, 24 (2013), pp. 657-665.
  6. Bors D., Skowron A., Walczak S., On existence of solutions to nonlinear optimal control systems, Dynamic Systems and Applications, 21 (2012), pp. 441-456.
  7. Bors D., Majewski M., On Mayer problem for systems governed by second order ODE, Optimization, 63 (2014), pp. 239-254.
  8. Bors D., Walczak S., Application of 2D systems to investigation of a process of gas filtration,Multidimensional Systems and Signal Processing, 23 (2012), pp. 119-130.
  9. Bors D., Majewski M., Walczak S., Optimal control systems with constrains defined on unbounded sets, Intech, Modeling, Simulation and Optimization, Tolerance and Optimal Control (2010), pp. 197-206.
  10. Bors D., Walczak S., Multidimensional second order systems with controls,Asian Journal of Control, 12 (2010), pp. 159-167.
  11. Bors D., Majewski M., On the controllability to the interval of the system governed by a hyperbolic equation, Kybernetes, 38 (2009), pp. 1178-1186.
  12. Bors D., Skowron A., Walczak S., Optimal control and stability of elliptic systems with integral cost functional, Systems Science, 33 (2007), pp. 13-26.
  13. Bors D., Superlinear elliptic systems with distributed and boundary controls, Control and Cybernetics, 34 (2005) pp. 987-1004.
  14. Bors D., Walczak S., Optimal control of elliptic systems with distributed and boundary controls, Nonlinear Analysis: Theory, Methods and Applications, 63 (2005), pp. 1367-1376.
  15. Bors D., Walczak S., Stability of nonlinear elliptic systems with distributed parameters and variable boundary data,Journal of Computational and Applied Mathematics, 164-165 (2004), pp. 117-130.
  16. Bors D., Walczak S., Nonlinear elliptic systems with variable boundary data, Nonlinear Analysis: Theory, Methods and Applications, 52 (2003), pp. 1347-1364.
  17. Dorota Bors, Dirichlet problems with variable boundary data for nonlinear partial differential equations, Demonstratio Mathematica, Demonstratio Mathematica, 33 (2000), pp. 295-312.
  18. Dorota Bors, Stanisław Walczak, Dirichlet problems with variable boundary data,
    Inclusions and Optimal Control, Lecture Notes in Nonlinear Analysis, (1998), vol. 2, 57-71, 1998.

Inne publikacje, materiały konferencyjne oraz preprinty:

  1. Bors D., Stańczy R. Global invertibility and implicit function theorems by Mountain Pass Theorem, 10 stron.
  2. Bors D., Optimal control of systems governed by Dirichlet fractional Laplacian in the minimax framework arXiv:1509.01283 (2015), 20 stron.
  3. Bors D., Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. ArXiv 1408.0618 (2014) 20 stron.
  4. Bors D., Stańczy R., On some equation modeling rocket motion. ArXiv, 1212.5826 (2012), 8 stron.
  5. Bors D., Majewski M., On Mayer problem for systems without linear-growth condition. Book of abstracts of the Israeli-Polish Mathematical Meeting, Łódź, September 11-15, 2011.
  6. Bors D., Walczak S., 2D systems with controls and some their applications. Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2010), Budapest, Hungary, 5-9 July 2010.
  7. Bors D., Majewski M., Mysiński B., Walczak S., On the controllability of second order systems with constrained controls. Book of abstract of the 8th AIMS Conference on Dynamical Systems, Differential Equations and Applications, Dresden, Germany, May 25 – 28, 2010.
  8. Bors D., Walczak S., On some nonlinear second order control systems. Proceedings of the 6th International Workshop on Multidimensional (nD) Systems, Saloniki, Grecja, 2009, pp. 25-28.
  9. Bors D., Majewski M., On the controllability to the interval of the system governed by a hyperbolic equation. 14th International Congress of Cybernetics and Systems of WOSC, Wrocław, Poland, September 9—12, 2008, strony 73—79.
  10. Bors D., Majewski M., Walczak S., Controllability of one-dimensional and two-dimensional systems. Proceedings of the 2007 International Workshop on Multidimensional (nD) Systems, nDS 2007, University of Aveiro, Aveiro, Portugal, June 27–29, 2007.
  11. Bors D., Jakszto M., Walczak S., On approximate solution of equation with nonsingular roots. International Conference on Numerical Analysis and Applied Mathematics 2005 ICNAAM 2005, Wiley-VCH Verlag, Weinheim, pp. 76-78.
  12. Bors D., Jakszto M., Walczak S., On an algorithm and computer program for finding approximate solutions of nonlinear systems. International Congress of Computational and Applied Mathematics 2004, ICCAM 2004, Katholike Universiteit Leuven, Belgium, July 26—30, 2004.
  13. Bors D., Ciągła zależność rozwiązań układów eliptycznych od parametrów i warunków brzegowych. Materiały XXXI Ogólnopolskiej Konferencji Zastosowań Matematyki, Warszawa 2002, strona 12.
  14. Bors D., Problemy Dirichleta ze zmiennymi warunkami brzegowymi. Materiały XXVII Ogólnopolskiej Konferencji Zastosowań Matematyki, Warszawa 1998, strona 10.

Prof. nadzw. dr hab. Dariusz Idczak

  1. Idczak, Dariusz; Kamocki, Rafał Existence of optimal solutions to Lagrange problem for a fractional nonlinear control system with Riemann-Liouville derivative. Math. Control Relat. Fields 7 (2017), no. 3, 449–464.
  2. Kaczorek, Tadeusz; Idczak, Dariusz Cauchy formula for the time-varying linear systems with Caputo derivative. Fract. Calc. Appl. Anal. 20 (2017), no. 2, 494–505.
  3. Idczak, Dariusz Functions of finite fractional variation and their applications to fractional impulsive equations. Czechoslovak Math. J. 67(142) (2017), no. 1, 171–195.
  4. Idczak, Dariusz On a generalization of a global implicit function theorem. Adv. Nonlinear Stud. 16 (2016), no. 1, 87–94.
  5. Idczak, Dariusz; Walczak, Stanislaw On a linear-quadratic problem with Caputo derivative. Opuscula Math. 36 (2016), no. 1, 49–68.
  6. Idczak, Dariusz; Walczak, Stanislaw Application of a global implicit function theorem to a general fractional integro-differential system of Volterra type. J. Integral Equations Appl. 27 (2015), no. 4, 521–554.
  7. Idczak, Dariusz; Kamocki, Rafał; Majewski, Marek; Walczak, Stanisław Existence of optimal solutions to Lagrange problems for Roesser type systems of the first and fractional orders. Appl. Math. Comput. 266 (2015), 809–819.
  8. Bourdin, Loïc; Idczak, Dariusz A fractional fundamental lemma and a fractional integration by parts formula—Applications to critical points of Bolza functionals and to linear boundary value problems. Adv. Differential Equations 20 (2015), no. 3-4, 213–232.
  9. Idczak, Dariusz; Kamocki, Rafał Fractional differential repetitive processes with Riemann-Liouville and Caputo derivatives. Multidimens. Syst. Signal Process. 26 (2015), no. 1, 193–206.
  10. Idczak, Dariusz; Skowron, Andrzej; Walczak, Stanisław On a class of diffeomorphisms defined by integro-differential operators. Calculus of variations and PDEs, 77–86, Banach Center Publ., 101, Polish Acad. Sci. Inst. Math., Warsaw, 2014.
  11. Idczak, Dariusz; Walczak, Stanislaw Optimization of a fractional Mayer problem—existence of solutions, maximum principle, gradient methods. Opuscula Math. 34 (2014), no. 4, 763–775.
  12. Idczak, Dariusz A global implicit function theorem and its applications to functional equations. Discrete Contin. Dyn. Syst. Ser. B 19 (2014), no. 8, 2549–2556.
  13. Idczak, Dariusz; Walczak, Stanisław Fractional Sobolev spaces via Riemann-Liouville derivatives. J. Funct. Spaces Appl. 2013, Art. ID 128043, 15 pp.
  14. Idczak, Dariusz; Skowron, Andrzej; Walczak, Stanisław Sensitivity of a fractional integrodifferential Cauchy problem of Volterra type. Abstr. Appl. Anal. 2013, Art. ID 129478, 8 pp.
  15. Idczak, Dariusz; Walczak, Stanislaw A fractional imbedding theorem. Fract. Calc. Appl. Anal. 15 (2012), no. 3, 418–425.
  16. Idczak, Dariusz; Majewski, Marek Fractional fundamental lemma of order α∈(n−12,n) with n∈N, n≥2. Dynam. Systems Appl. 21 (2012), no. 2-3, 251–268.
  17. Idczak, Dariusz; Skowron, Andrzej; Walczak, Stanislaw On the diffeomorphisms between Banach and Hilbert spaces. Adv. Nonlinear Stud. 12 (2012), no. 1, 89–100.
  18. Idczak, Dariusz; Majewski, Marek Existence of optimal solutions of two-directionally continuous linear repetitive processes. Multidimens. Syst. Signal Process. 23 (2012), no. 1-2, 155–162.
  19. Idczak, Dariusz; Kamocki, Rafal On the existence and uniqueness and formula for the solution of R-L fractional Cauchy problem in Rn. Fract. Calc. Appl. Anal. 14 (2011), no. 4, 538–553.
  20. Idczak, D.; Walczak, S. Optimal control of second order systems with infinite time horizon: existence of solutions. J. Optim. Theory Appl. 147 (2010), no. 2, 205–222.
  21. Idczak, D.; Majewski, M. A generalization of the Poincaré-Miranda theorem with an application to the controllability of nonlinear repetitive processes. Asian J. Control 12 (2010), no. 2, 168–176.
  22. Idczak, Dariusz; Walczak, Stanisław An asymptotical stability in variational sense for second order systems. Adv. Nonlinear Stud. 10 (2010), no. 1, 161–174.
  23. Idczak, Dariusz Approximative piecewise constant bang-bang principle for differential repetitive processes. Internat. J. Control 82 (2009), no. 5, 910–917.
  24. Idczak, Dariusz Maximum principle for optimal control of two-directionally continuous linear repetitive processes. Multidimens. Syst. Signal Process. 19 (2008), no. 3-4, 411–423.
  25. Idczak, Dariusz; Majewski, Marek; Walczak, Stanislaw On controllability of nonlinear systems described by ordinary differential equations. Positive systems, 287–294, Lect. Notes Control Inf. Sci., 341, Springer, Berlin, 2006.
  26. Idczak, Dariusz; Majewski, Marek Bang-bang controls and piecewise constant ones for continuous Roesser systems. Multidimens. Syst. Signal Process. 17 (2006), no. 2-3, 243–255.
  27. Idczak, Dariusz; Walczak, Stanisław On some properties of Goursat-Darboux systems with distributed and boundary controls. Internat. J. Control 77 (2004), no. 9, 837–846.
  28. Walczak, Stanisław; Idczak, Dariusz Positive systems with nondecreasing controls. Existence and well-posedness. Positive systems (Rome, 2003), 369–376, Lect. Notes Control Inf. Sci., 294, Springer, Berlin, 2003.
  29. Idczak, Dariusz; Majewski, Marek Nonlinear positive 2D systems and optimal control. Positive systems (Rome, 2003), 329–336, Lect. Notes Control Inf. Sci., 294, Springer, Berlin, 2003.
  30. Idczak, Dariusz Bang-bang principle for linear and non-linear Goursat-Darboux problems. Internat. J. Control 76 (2003), no. 11, 1089–1094.
  31. Idczak, Dariusz; Majewski, Marek; Walczak, Szymon Stability analysis of solutions to an optimal control problem associated with a Goursat-Darboux problem. Multidimensional systems nD and iterative learning control (Czocha Castle, 2000). Int. J. Appl. Math. Comput. Sci. 13 (2003), no. 1, 29–44.
  32. Dariusz Idczak, Andrzej Rogowski, On a generalization of Krasnosielskii’s theorem,J. Austral. Math. Soc. 72, (2002), str. 389-394.
  33. Dariusz Idczak, Marek Majewski, Stanisław Walczak, N-dimensional continuous systems with the Darboux-Goursat and Dirichlet boundary data, The 9th IEEE International Conference on Electronics, Circuits and Systems, Dubrovnik, Chorwacja 15-18.09.2002.
  34. Dariusz Idczak, Marek Majewski, Stanisław Walczak, 2-D continuous control systems. A guide tour, The 8th IEEE International Conference on Methods and Models in Automation and Robotics, Szczecin 2-5.09.2002.
  35. Dariusz Idczak, The bang-bang principle for the Goursat-Darboux problem, The 15th International Symposium of the Mathematical Theory of Networks and Systems, University of Notre Dame, South Bend, Indiana, USA, 12-16.08.2002.
  36. Dariusz Idczak, Marek Majewski, Stanisław Walczak, Stabilność i istnienie rozwiązań optymalnych dla pewnych problemów optymalnych, XXX Ogólnopolska Konferencja Zastosowań Matematyki, Zakopane-Kościelisko 2001.
  37. Dariusz Idczak, Stanisław Walczak, Existence of an Optimal Solutions for Continuous Roesser Problem with a Terminal Condition, Multidimensional Signals, Circuits& Systems, Ed. K. Gałkowski & J. Wood, Taylor & Francis, London, New York (2001), str. 183-189.
  38. Dariusz Idczak, O pewnych problemach wariacyjnych dla równań różniczkowych zwyczajnych z warunkami brzegowymi typu Dirichleta i okresowymi oraz ich zastosowaniu, praca habilitacyjna, Wydawnictwo Uniwersytetu Łódzkiego, 2000.
  39. Dariusz Idczak, Marek Majewski, Stanisław Walczak, Stability analysis of one and two-dimensional continuous systems with parameters, Proceedings CD of the Fourteenth International Symposium of Mathematical Theory of Networks and Systems 2000.
  40. Dariusz Idczak, Marek Majewski, Stanisław Walczak, Stability of solutions to an optimal control problem for a continuous Fornasini-Marchesini system, Proceedings  of the Second International Workshop on Multidimensional (nD) Systems, 2000, str. 201-208.
  41. Dariusz Idczak. Nonlinear Roesser problem with a terminal condition. Maximum principle, Postprint Volume of the IFAC Workshop MIM’97 (ukazała się w 1998).
  42. Dariusz Idczak, Optimal control of a coercive Dirichlet problem, SIAM Journal on Control and Optim., vol. 36, 1250-1267, 1998.
  43. Dariusz Idczak, Distributional derivatives of functions of two variables of finite variation and their application to impulsive hyperbolic equation, Czechoslovak Mathematical Journal, vol. 48, 145-171, 1998.
  44. Dariusz Idczak, M-periodic problem of order 2k, Topological Methods in Nonlinear Analysis, 11 (1998), 169-185.
  45. Dariusz Idczak, Stability in semilinear problems, 2nd Symposium on Nonlinear Analysis, Toruń, 1999, str. 25.
  46. Dariusz Idczak Stability in semilinear problems, Journal of Differential Equations, 162(2000), str. 64-90.
  47. Dariusz Idczak, Stanisław Walczak, On the existence of a solution for some distributed optimal control hyperbolic system, International Journal of Mathematics and Mathematical Sciences, Vol. 23, No. 5(2000), str. 297-311.
  48. Dariusz Idczak, Nonlinear Roesser problem with a terminal condition. Maximum principle, Postprint Volume of the IFAC Workshop MIM’97.
  49. Dariusz Idczak, Stanisław Walczak, On the existence of a solution for some distributed optimal control hyperbolic system, International Journal of Mathematics and Mathematical Sciences, University of Central Florida.
  50. Dariusz Idczak, M-periodic problem of order 2k, Topological Methods in Nonlinear Analysis, 1996.
  51. Dariusz Idczak, Nonlinear Roesser problem with a terminal conditio, Maximum principle, Postprint volume of the IFAC Workshop MIM’97, Vienna, Austria.
  52. Dariusz Idczak, The maximum principle for a continuous 2-D Roesser model with a terminal condition, Proc. Third Intern. Symp. On Methods and Models in Automation and Robotics, 1996, 197-200.
  53. Dariusz Idczak, The generalization of the Du Bois-Reymond lemma for functions of two variables to the case of partial derivatives of any order, Banach Center Publications, Topology in Nonlinear Analysis, Vol. 35, 221-236, 1996.
  54. Dariusz Idczak, Necessary optimality conditions for a nonlinear continuous n-D Roesser model, Mathematics and Computers in Simulation, 41, 87-94, 1996.

Dr Rafał Kamocki

  1. Kamocki, Rafał; Majewski, Marek On the existence and continuous dependence on parameter of solutions to some fractional Dirichlet problem with application to Lagrange optimal control problem. J. Optim. Theory Appl. 174 (2017), no. 1, 32–46.
  2. Idczak, Dariusz; Kamocki, Rafał Existence of optimal solutions to Lagrange problem for a fractional nonlinear control system with Riemann-Liouville derivative. Math. Control Relat. Fields 7 (2017), no. 3, 449–464.
  3. Kamocki, Rafał; Obczyński, Cezary On fractional Cauchy-type problems containing Hilfer’s derivative. Electron. J. Qual. Theory Differ. Equ. 2016, Paper No. 50, 12 pp.
  4. Kamocki, Rafał Necessary and sufficient optimality conditions for fractional nonhomogeneous Roesser model. Optimal Control Appl. Methods 37 (2016), no. 4, 574–589.
  5. Kamocki, Rafał A new representation formula for the Hilfer fractional derivative and its application. J. Comput. Appl. Math. 308 (2016), 39–45.
  6. Kamocki, Rafał; Majewski, Marek Fractional linear control systems with Caputo derivative and their optimization. Optimal Control Appl. Methods 36 (2015), no. 6, 953–967.
  7. Idczak, Dariusz; Kamocki, Rafał; Majewski, Marek; Walczak, Stanisław Existence of optimal solutions to Lagrange problems for Roesser type systems of the first and fractional orders. Appl. Math. Comput. 266 (2015), 809–819.
  8. Kamocki, Rafał Variational methods for a fractional Dirichlet problem involving Jumarie’s derivative. Math. Probl. Eng. 2015, Art. ID 248517, 9 pp.
  9. Kamocki, Rafał Necessary and sufficient conditions for the existence of the Hadamard-type fractional derivative. Integral Transforms Spec. Funct. 26 (2015), no. 6, 442–450.
  10. Idczak, Dariusz; Kamocki, Rafał Fractional differential repetitive processes with Riemann-Liouville and Caputo derivatives. Multidimens. Syst. Signal Process. 26 (2015), no. 1, 193–206.
  11. Kamocki, Rafał Fractional Roesser problem and its optimization. Calculus of variations and PDEs, 93–106, Banach Center Publ., 101, Polish Acad. Sci. Inst. Math., Warsaw, 2014.
  12. Kamocki, Rafał; Majewski, Marek On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points. Discrete Contin. Dyn. Syst. Ser. B 19 (2014), no. 8, 2557–2568.
  13. Kamocki, Rafal Pontryagin maximum principle for fractional ordinary optimal control problems. Math. Methods Appl. Sci. 37 (2014), no. 11, 1668–1686.
  14. Kamocki, Rafal; Obczyński, Cezary On fractional differential inclusions with the Jumarie derivative. J. Math. Phys. 55 (2014), no. 2, 022902, 10 pp.
  15. Kamocki, Rafał On the existence of optimal solutions to fractional optimal control problems. Appl. Math. Comput. 235 (2014), 94–104.
  16. Idczak, Dariusz; Kamocki, Rafal On the existence and uniqueness and formula for the solution of R-L fractional Cauchy problem in Rn. Fract. Calc. Appl. Anal. 14 (2011), no. 4, 538–553.

Dr Marek Majewski

Publikacje w czasopismach

  1. Publikacje naukowe w czasopismach znajdujących się w bazie Journal Citation Reports (JCR).
    1. D. Idczak, M. Majewski, S. Walczak, Stability analysis of solutions to an optimal control problem associated with Goursat-Darboux problem, International Journal of Applied Mathematics and Computer Science, 13, 1, pp. 29-44, 2003. 6 pkt.
    2. M. Majewski, On the Existence of Optimal Solutions ta an Optimal Control Problem, Journal of Optimization Theory and Application, 128, 3, pp. 635-651, 2006. IF 0.633, 20 pkt.
    3. D. Idczak, M. Majewski, Bang-bang Controls and Piecewise Constant ones for Continuous Roesser Systems. Multidimensional Systems and Signal Processing, 17, 2, pp. 243-255, 2006. IF 0.588, 20 pkt.
    4. D. Bors, M. Majewski, On the controllability to the interval of the system governed by a hyperbolic equation, Kybernetes, 38, 7/8, pp. 1182-1190, 2009. IF 0.308, 10 pkt.
    5. M. Majewski, Stability Analysis of an Optimal Control Problem for a Hyperbolic Equation, Journal of Optimization Theory and Applications, 141, 1, pp. 127-146, 2009. IF 0.996, 20 pkt.
    6. D. Idczak, M. Majewski, A Generalization of the Poincare-Miranda Theorem with an Application to the Controllability of Nonlinear Repetitive Processes, Asian Journal of Control, 12, 2, pp. 168-176, 2010. IF 0.578, 20 pkt.
    7. D. Idczak, M. Majewski, Existence of optimal solutions of two-directionally continuous linear repetitive processes, Multidimensional Systems and Signal Processing, 23, 1, pp. 155-162, 2012. IF 0.857, 20 pkt.
    8. D. Idczak, M. Majewski, Fractional fundamental lemma of order MATH with $n\in\QTR{Bbb}{N}$, $n\geq2$, Dynamic Systems and Applications, 21, pp. 251-268, 2012. IF 0.395, 15p.
    9. D. Bors, M. Majewski, On the existence of an optimal solution of the Mayer problem governed by 2D continuous counterpart of the Fornasini-Marchesini model, Multidimensional Systems and Signal Processing, 24, 4, pp. 657-665, 2013. IF 1.578, 20 pkt.
    10. R. Kamocki, M. Majewski, Fractional linear control systems with Caputo derivative and their optimization, Optimal Control Applications and Methods, 36, 6, pp. 953-967, 2014. IF 0.903, 30 pkt.
    11. R. Kamocki, M. Majewski, On the continuous dependence of solutions to a fractional Dirichlet problem. The case of saddle points, Discrete and Continuous Dynamical Systems Series B, 19, 8, pp. 2557-2568, 2014. IF 0.768, 25 pkt.
    12. D. Bors, M. Majewski, On Mayer problem for systems governed by second-order ODE, Optimization, 63, 2, pp. 239-254, 2014. IF 0.936, 25p.
    13. D. Idczak, R. Kamocki, M. Majewski, S. Walczak, Existence of optimal solutions to Lagrange problems for Roesser type systems of the first and fractional orders, Applied Mathematics and Computation, 266, pp. 809-819, 2015. IF 1.345, 40 pkt.
    14. M. Majewski, S. Walczak, On a fractional Dirichlet problem of a higher order, Dynamic Systems and Applications, 24, pp. 479-490, 2015. IF 0.213, 15 pkt.
    15. R. Kamocki, M. Majewski, On the Existence and Continuous Dependence on Parameter of Solutions to Some Fractional Dirichlet Problem with Application to Lagrange Optimal Control Problem, Journal of Optimization Theory and Applications. DOI:10.1007/s10957-016-0954-6. IF 1.160, 35 pkt. – dane z 2015.
    16. M. Bartkiewicz, M. Majewski, S. Walczak, On 2D integro-differential systems. Stability and sensitivity analysis, Multidimensional Systems and Signal Processing. DOI:10.1007/s11045-016-0442-z IF 1.436, 30 pkt. – dane z 2015.

Publikacje w czasopismach punktowanych według listy ministerialnej (spoza JCR)

  1. D. Idczak, M. Majewski, Nonlinear Positive 2D Systems and Optimal Control, Lecture Notes in Control and Information Sciences, 294, pp. 329-336, 2003. 10 pkt.
  2. D. Idczak, M. Majewski, S. Walczak, On controllability of nonlinear systems described by ordinary differential equations, Positive systems, Lecture Notes in Control and Inform. Sci., 341, Springer, Berlin, pp. 287-294, 2006. 10 pkt.
  3. D. Bors, S. Walczak, M. Majewski, Optimal Control Systems with Constrains on Unbounded Sets, Intech, pp. 197-206, 2010. 13 pkt.
  4. M. Majewski, Control system defined by some integral operator, Opuscula Mathematica, 37, 2, 2017. 11 pkt.

Publikacje w recenzowanych materiałach konferencyjnych.

  1. D. Idczak, M. Majewski, S. Walczak, Stability analysis of one and two-dimensional continuous systems with parameters, Proceedings of the Fourteenth International Symposium of Mathematical Theory of Networks and Systems MTNS 2000, Perpignan, France, 19-23 June, 2000.
  2. M. Majewski, Istnienie rozwiązań optymalnych i ich stabilność dla pewnych problemów ze sterowaniem, XIV Krajowa Konferencja Automatyki. Zielona Góra 24-27 czerwca, 2002.
  3. D. Idczak, M. Majewski, S. Walczak, 2-D continuous control systems. A guide tour, Proceedings of the 8th IEEE International Conference on Methods and Models in Automation and Robotics, Szczecin, Poland, 2-5 September, 2002.
  4. D. Idczak, M. Majewski, S. Walczak, N-dimensional continuous systems with the Darboux-Goursat and Dirichlet boundary data, Proceedings of the 9th IEEE International Conference on Electronics, Circuits and Systems, Dubrovnik, Croatia, 15-18 September, 2002.
  5. D. Idczak, M. Majewski, Controllability of Goursat-Darboux systems – some numerical results, Preprints of the 16th IFAC World Congress, Prague, Czech Rupublic, 2005.
  6. M. Majewski, On an algorithm for construction a piecewise constant control for a continuous Roesser system, Proceedings of the Fourth International Workshop on Multidimensional (nD) Systems (nDS 2005), Wuppertal, Germany, 10-13 July, 2005.
  7. D. Bors, M. Majewski, S. Walczak, Controllability of one-dimensional and two-dimensional systems, Proceedings of the 2007 International Workshop on Multidimensional (nD) Systems (nDS 2007), Aveiro, Portugal, 27-29 June, 2007.
  8. M. Majewski, On a nonlinear two-directionaly continuous repetitive process, Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010, Budapest, Hungary, 2010.
  9. M. Majewski, Existence of optimal solutions of two-directionally continuous repetitive process under convexity assumption, Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010, Budapest, Hungary, 2010.
  10. D. Idczak, M. Majewski, Fractional du Bois-Reymond lemma of order MATH , Electronic Proceedings of the International Workshop on Multidimensional (nD) Systems (nDS 2011), Poitiers, France, 2011.
  11. R. Kamocki, M. Majewski, On a Fractional Dirichlet Problem, 17th International Conference on Methods and Models in Automation and Robotics (MMAR2012), Międzyzdroje, Poland, 27-30 August, 2012.
  12. D. Idczak, R. Kamocki, M. Majewski, Fractional continuous Roesser model with Riemann-Liouville derivative, Proceedings of the 8th International Workshop on Multidimensional Systems (nDS2013), Erlangen, Germany, 9-11 September, 2013.
  13. D. Idczak, R. Kamocki, M. Majewski, On a fractional continuous counterpart of Fornasini-Marchesini model, Proceedings of the 8th International Workshop on Multidimensional Systems (nDS2013), Erlangen, Germany, 9-11 September, 2013.
  14. D. Idczak, M. Majewski, Compactness of fractional embeddings for boundary value problems, 18th International Conference on Methods and Models in Automation and Robotics (MMAR2013), Międzyzdroje, Poland, August 26-29, 2013, pp. 599-603.
  15. M. Majewski, Existence of optimal solutions to Lagrange and Bolza problems for fractional Dirichlet problem via continuous dependence, 19th International Conference on Methods and Models in Automation and Robotics (MMAR2014), Międzyzdroje, Poland, September 2-5, 2014, pp. 152-158.

Krótkie abstrakty konferencyjne.

  1. D. Idczak, M. Majewski, S. Walczak, Stabilność i istnienie rozwiązań optymalnych dla pewnych problemów optymalnych, Materiały Trzydziestej Ogólnopolskiej Konferencji Zastosowań Matematyki, Zakopane-Kościelisko, Polska, 2001.
  2. M. Majewski, S. Walczak, Optimal control systems with constraints defined on unbounded sets, Book of abstracts, 23rd IFIP TC 7 Conference on System Modelling and Optimization, Cracow, Poland, 23-27 July, 2007.
  3. R. Kamocki, M. Majewski, S. Walczak. Fractional du Bois-Reymond lemma and its applications, Book of abstracts of the 9th AIMS International Conference on Dynamical Systems, Differential Equations and Applications, Orlando, Florida, USA, 1-5 July, 2012.
  4. R. Kamocki, M. Majewski, D. Idczak, Partial derivatives of fractional orders and their applications to fractional partial differential equations, Abstracts and Talks of Dynamical Systems and Applications the Conference in honor of Prof. Avner Friedman, ŁódŸ, Poland, 7 May, 2013.
  5. R. Kamocki, M. Majewski, Fractional linear control systems with the Caputo derivative and their optimization, Materiały V Konferencji Naukowej Rachunek Różniczkowy Niecałkowitego Rzędu i Jego Zastosowania, (RRNR 2013), Kraków, Polska, 4-5 lipca 2013.
  6. M. Majewski, Existence of optimal solution to some Bolza problem governed by Dirichlet fractional problem, Abstract of talks, Joint Meeting of the German Mathematical Society and the Polish Mathematical, Poznań, Poland, 17-20 September, 2014.
  7. R. Kamocki, M. Majewski, On a variational approach to fractional Dirichlet problem, 3rd Conference on Dynamical Systems and Applications, ŁódŸ, Poland 16 April, 2015.
  8. M. Majewski, A. Skowron, On some 2D Integro-differential Control Problem, The IEEE 9th International Workshop on MultiDimensional Systems (nDS 2015), Vila Real, Portugal, 7-9 September, 2015.
  9. M. Majewski, On some Mayer problem governed by a fractional Dirichlet system, VII Symposium on Nonlinear Analysis, Toruń, Poland, 14-18 September, 2015.
  10. M. Majewski, Control system defined by some integral operator, Dynamical Systems and Applications IV, ŁódŸ, Poland, 16-18 June, 2016.

Dr Elżbieta Motyl

  1. Brzeźniak, Zdzisław; Motyl, Elżbieta; Ondrejat, Martin; Invariant measure for the stochastic Navier–Stokes equations in unbounded 2D domains. Ann. Probab. 45 (2017), no. 5, 3145–3201.
  2. Motyl, Elżbieta Stochastic hydrodynamic-type evolution equations driven by Lévy noise in 3D unbounded domains—abstract framework and applications. Stochastic Process. Appl. 124 (2014), no. 6, 2052–2097.
  3. Brzeźniak, Zdzisław; Hausenblas, Erika; Motyl, Elżbieta Uniqueness in law of the stochastic convolution process driven by Lévy noise. Electron. J. Probab. 18 (2013), no. 57, 15 pp.
  4. Motyl, Elżbieta Stochastic Navier-Stokes equations driven by Lévy noise in unbounded 3D domains. Potential Anal. 38 (2013), no. 3, 863–912.
  5. Brzeźniak, Zdzisław; Motyl, Elżbieta Existence of a martingale solution of the stochastic Navier-Stokes equations in unbounded 2D and 3D domains. J. Differential Equations 254 (2013), no. 4, 1627–1685.
  6. Motyl, Elżbieta Stability for a certain class of numerical methods—abstract approach and application to the stationary Navier-Stokes equations. Ann. Fac. Sci. Toulouse Math. (6) 21 (2012), no. 4, 651–743.
  7. Motyl, Elżbieta A new method of calculation of the pressure in the stationary Navier-Stokes equations. J. Comput. Appl. Math. 189 (2006), no. 1-2, 207–219.
  8. Motyl, Elżbieta Some remarks on the non-uniqueness of the stationary solutions of Navier-Stokes equations. Univ. Iagel. Acta Math. No. 39 (2001), 255–262.
  9. Motyl, Elżbieta The stationary Navier-Stokes equations—application of the implicit function theorem to the problem of stability. Univ. Iagel. Acta Math. No. 38 (2000), 227–277.
  10. Motyl, Elżbieta The stability of the Holly method for the stationary Navier-Stokes problem. Recent advances in numerical methods and applications, II (Sofia, 1998), 335–343, World Sci. Publ., River Edge, NJ, 1999
  11. Motyl, Elżbieta Application of the Hodge decomposition to the non-stationary Navier-Stokes equations. Univ. Iagel. Acta Math. No. 37 (1999), 337–350.
  12. Holly, Konstanty; Motyl, Elżbieta Inversion of the divdiv∗-operator and three numerical methods in hydrodynamics. Selected problems of mathematics, 35–94, 50th Anniv. Cracow Univ. Technol. Anniv. Issue, 6, Cracow Univ. Technol., Kraków, 1995.
  13. Koroński, Jan; Motyl, Elżbieta The biparabolic limit problem for the strip with the boundary conditions of the third kind. The limit problems for differential equations, 143–159, Monogr., 118, Cracow Univ. Tech., Kraków, 1991.

Prof. dr hab. Stanisław Walczak

  1. Bartkiewicz, Monika; Majewski, Marek; Walczak, Stanisław, On 2D integro-differential systems. Stability and sensitivity analysis. Multidimens. Syst. Signal Process. 28 (2017), no. 4, 1679–1695.
  2. Stanisław Walczak, Dariusz Idczak, Application of a global implicit function theorem to a general fractional integro-differential systems of Volterra type, Journal of Integral Equations and Applications, J. Integral Equations Appl. 27 (2015), no. 4, 521–554.
  3. Stanisław Walczak, Dariusz Idczak, On a linear-quadratic problem with Caputo derivative, Opuscula Mathematica, 36 (2016), no. 1, 49–68.
  4. Stanisław Walczak, Marek Majewski, On a fractional Dirichlet problem of higher order, Dynamical Systems and Applications 24 (2015), 479-490.
  5. Stanisław Walczak, Dariusz Idczak, Rafał Kamocki, Marek Majewski, Existence of optimal solutions to Lagrange problems for Roesser type systems of the first and fractional orders, Applied Mathematics and Computation 266 (2015), 809-819.
  6. Stanisław Walczak, Monika Bartkiewicz, Andrzej Skowron, On diffeomorphisms defined by some 2D nonlinear operators and their application to stability and sensitivity analysis, Proceedings of the 20th International Conference on Methods and models in Automations and Robotics (MMAR), Międzyzdroje 2015.
  7. Stanisław Walczak, Dorota Bors, Systems described by Volterra typy integral operator, Discrete and Continuous Dynamical Systems – Ser. B, (2014).
  8. Stanisław Walczak, Dariusz Idczak, Optimization of a fractional Mayer problem-existence of solutions, maximum principle, gradient methods, Opuscula Mathematica 34, no 4 (2014), 763-775.
  9. Stanisław Walczak, Dariusz Idczak, Andrzej Skowron, On a class of diffeomorphisms defined by integro-differential operators. Banach Center Publications (2014).
  10. Stanisław Walczak, Dariusz Idczak, Sensitivity of a fractional integro-differential Cauchy problem of Volterra type. Abstract and Applied Analysis, vol. 2013.
  11. Stanisław Walczak, Dariusz Idczak, Fractional Sobolev spaces via Riemann-Liouville derivatives. Journal of Function Spaces and Applications, vol. 2013.
  12. Stanisław Walczak, Dariusz Idczak, A fractional imbedding theorem. Fractional calculus and Applied Analysis vol. 15, 3, (2012)
  13. Stanisław Walczak, Dariusz Idczak, Andrzej Skowron, On some class of diffeomorphisms defined by integro-differential operators, The satellite conference of the 6th European Congress of Mathematics. Calculus of Variations and PDEs Szczawnica, Poland, 9-12 July 2012.
  14. Stanisław Walczak, Dariusz Idczak, Compactness of fractional imbeddings, 2012 17th International Conference on Methods and Models in Automation and Robotics, MMAR 2012.
  15. Stanisław Walczak, Dariusz Idczak, Andrzej Skowron, On the Diffeomorphisms Between Banach and Hilbert Spaces, Advanced Nonlinear Studies 12, 1, 89-100, (2012).
  16. Stanisław Walczak, Dorota Bors, Andrzej Skowron, On existence of solutions to nonlinear optimal control systems, Dynamic Systems and Applications, 21,0441-456, (2012).
  17. Stanisław Walczak, On the diffeomorphism between Banach and Hilbert Speces, Book abstracts, Israeli-Polish Mathematical Meeting, Łódź, September 11-15, 2011.
  18. Stanisław Walczak, Dorota Bors, 2D systems with controls and some their application, Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems MTNS 2010, Budapest, Hungary. ISBN 978-963-311-370-7, 315-318.
  19. Stanisław Walczak, Dorota Bors, Marek Majewski, Optimal Control Systems with Constraints Defined on Unbounded Sets, Intech (2010); pp. 197-206.
  20. Stanisław Walczak, Dorota Bors, Multidimensional second order systems with controls, Asian Journal of Control; Vol. 12; No. 2; pp. 159-167; March 2010.
  21. Stanisław Walczak, Dorota Bors, Application of 2D systems to investigation of a process of gas filtration, Multidimensional Systems and Signal Processing, June 2012, Vol. 23, Issue 1-2, pp. 119-130.
  22. Stanisław Walczak, Dariusz Idczak, Optimal Control of Second Order Systems with Infinite Time Horizon: Existence of Solutions, Journal of Optimization Theory and Application; 147 (2010), 205-222.
  23. Stanisław Walczak, Dariusz Idczak, An Asymptotical Stability in Variational Sense for Second order Systems, Advanced Nonlinear Studies; 10 (2010), 161-174.
  24. Stanisław Walczak, Dorota Bors, On some nonlinear second order control systems. Proceedings of the 6th International Workshop on Multidimensional (nD) Systems, Saloniki, Grecja, 2009, pp. 25-28.
  25. Stanisław Walczak, Dorota Bors, Andrzej Skowron, Optimal control and stability of elliptic systems with integral cost functional, System Science, 33 (2007), 13-26.
  26. Stanisław Walczak, Marek Majewski, Optimal control system with constraints defined on unbounded sets, Book of abstracts, 23rd IFIP TC 7 Conference on System Modeling and Optimization, Cracow, Poland, July 23-27,02007.
  27. Stanisław Walczak, Dariusz Idczak, Optimal control system of second order with infinite time horizon, Book of abstracts, 23rd IFIP TC 7 Conference on System Modeling and Optimization, Cracow, Poland, July 23-27,2007.
  28. Stanisław Walczak, Dariusz Idczak, Positive continuous Roesser systems, Proceedings of the 17th International Symposium on Mathematical Theory Networks and Systems, Kyoto, Japan, July 24-28, 2006.
  29. Stanisław Walczak, Dariusz Idczak, Marek Majewski, On controllability of nonlinear systems described by ordinary differential equations, Positive systems, 287-294, Lecture Notes in Control and Inform. Sci., 341, Springer, Berlin, 2006.
  30. Stanisław Walczak, Monika Bartkiewicz, Optimal control of systems with periodic and Dirichlet boundary conditions, Proceedings of the International Conference on Differential Equations, Hasselt 2003, 569-574 (referat zaproszony).
  31. Stanisław Walczak, Dorota Bors, Optimal control elliptic systems with distributed parameters and boundary controls, Nonlinear Analysis 63 (2005), el1367-el1376.
  32. Stanisław Walczak, Dariusz Idczak, Optimal control of positive 2-D systems with infinite horizon, Sixteenth International Symposium on Mathematical Theory of Networks and Systems (MTNS2004), Katholieke Universiteit Leuven, Belgium, July 5-9, 2004.
  33. Stanisław Walczak, Dorota Bors, On an algorithm and computer program for finding approximate solutions of nonlinear systems, ICCAM 2004: Eleventh International Congress on Computational and Applied Mathematics Katholieke Universiteit Leuven, Belgium, July 26-30, 2004.
  34. Stanisław Walczak, Dariusz Idczak, On some properties of Goursat-Darboux systems with distributed and boundary controls, International Journal of Control, 2004, Vol. 77, No. 9, 837-846.
  35. Stanisław Walczak, Dorota Bors, Stability of nonlinear elliptic systems with distributed parameters and variable boundary data, Journal of Computational and Applied Mathematics, Vol. 164-165 (2004), pp. 117-130
  36. Stanisław Walczak, Dariusz Idczak, Marek Majewski, Stability of solutions to an optimal control problem associated with a Goursat-Darboux problem, International Journal of Applied Mathematics and Computer Science, Vol. 13, No. 1 (2003), pp. 101-116.
  37. Stanisław Walczak, Dariusz Idczak, The bang-bang principle for hyperbolic control systems and piecewise constant controls – wysłana.
  38. Stanisław Walczak, Dariusz Idczak, Positive systems with nondecreasing controls, Lecture Notes in Control and Information Sciences, vol. 294, Springer-Verlag 2003.
  39. Stanisław Walczak, Dorota Bors, Stability of nonlinear elliptic systems with distributed parameters and variable boundary data – Louvain.
  40. Stanisław Walczak, U. Ledzewicz and H. Schättler, Optimal control systems governed by second order ODEs with Dirichlet boundary data and variable parameters, Illinois J. Math., Vol. 47, No. 4 (2003), pp. 1189-1206.
  41. Stanisław Walczak, Dariusz Idczak, Marek Majewski, 2-D continuous control systems. A guide tour, MMAR Szczecin 2002, pp. 15-20.
  42. Stanisław Walczak, Dariusz Idczak, Marek Majewski, N-dimensional continuous systems with the Darboux-Goursat and Dirichlet data, ICECS Dubrovnik 2002, pp. 919-922.
  43. Stanisław Walczak, Dorota Bors, Nonlinear elliptic systems with variable boundary data, Nonlinear Analysis, 52 (2003), pp. 1347-1364.
  44. Stanisław Walczak, Stability of nonlinear elliptic systems with distributed parameters and variable boundary data. Int Congress on Computional and Applied Mathematics (2002), Katholieke Universiteit Leuven, Belgia.
  45. Stanisław Walczak, Stability of solutions to an optimal control problem for a continuous Fornasini-Marchesini system, Proceedings of the Second International Conference on N-Dimensional Systems, 27-30 June, 2000, Czocha Castle, Poland, pp. 201-208.
  46. Stanisław Walczak, Ciągła zależność rozwiązań układów eliptycznych od parametrów i warunków brzegowych. Trzecie Forum Równań Różniczkowych Cząstkowych, Będlewo 2002.
  47. Stanisław Walczak, U. Ledzewicz and H. Schättler, Stability of elliptic optimal control problems, Computers and Mathematics with Applications, 41 (2001), pp. 1245-1256.
  48. Stanisław Walczak, Well-posed and ill-posed optimal control problems, JOTA, 109, No. 1 (2001), pp. 169-185.
  49. Stanisław Walczak, Variational and boundary value problems with perturbations, TMNA, 18 (2001), pp. 103-118.
  50. Stanisław Walczak, Stability analysis of one and two-dimensional systems with parameters, Proceedings of the Fourteenth International Symposium of Mathematical Theory of Networks and Systems, Perpignan, France, June 19-23, 2000, pp. 135-150.
  51. Stanisław Walczak, Existence of an optimal solution for a continuous Roesser problem with a terminal condition, Multidimensional Signals, Circuits and Systems, Taylor and Francis, NY-London 2001, pp. 183-189.
  52. Stanisław Walczak, Dariusz Idczak, Existence of an optimal solution for a continuous Roesser problem, Proceedings of the International Conference on N-dimensional Systems, NDS98, Zielona Góra, 13-15 lipca 1998.
  53. Stanisław Walczak, Dorota Bors, Dirichlet problems with variable boundary data, Lecture Notes in Nonlinear Analysis, Vol. 2 (1998), pp. 57-71.
  54. Stanisław Walczak, Urszula Ledzewicz, Optimal control of systems governed by some elliptic equations, Discrete and Continuous Dynamical Systems, Vol. 5, No. 1 (1999), pp. 279-290.
  55. Stanisław Walczak, Urszula Ledzewicz and H. Schättler, A high – order mapping theorem in Banach spaces, Nonlinear Studies, Vol. 6, No. 1 (1999), pp. 1-10.
  56. Stanisław Walczak, Superlinear variational and boundary value problems with parameters, Nonlinear Analysis, Theory, Methods and Applications,} 43 (2001), pp. 183-198.
  57. Stanisław Walczak, Boundary value problems with parameters, Materiały Konferencji z Analizy Nieliniowej, Łódź 1996, (appear 1997), pp. 57-66.
  58. Stanisław Walczak, Hamiltonian systems with controls, Nonlinear Analysis, Theory and Applications, Vol. 30, No. 4 (1997), pp. 2429-2438.
  59. Stanisław Walczak, Continuous dependence on parameters and boundary data for nonlinear P.D.E. Coercive case. Differential and Integral Equations,11, No. 1, (1998), pp. 35-46.
  60. Stanisław Walczak, Dariusz Idczak, On the controllability of continuous Roesser systems, International Symposium on Methods and Models in Automation and Robotics, Międzyzdroje 95, pp. 115119.
  61. Stanisław Walczak, On the continuous dependence on parameters of solutions of the Dirichlet problem. Part II. The case of saddle points. } pp. 263-273.
  62. Stanisław Walczak, On the continuous dependence on parameters of solutions of the Dirichlet problem. Part I. The coercive case. Biulletin de la Classe des Sciences de l’Académie Royale de Belgique, 7-12 (1995), pp. 247-261.
  63. Stanisław Walczak, Urszula Ledzewicz, Optimal control of systems governed by some elliptic equations. Discrete and Continuous Dynamical Systems, Vol. 5, No. 1 (1999), pp. 279-290.
  64. Stanisław Walczak, Dariusz Idczak, The existence of solutions for some distributed optimal control problems, Proceedings of the International Conference on Optimization, Spała 1994.
  65. Stanisław Walczak, Dariusz Idczak, Andrzej Nowakowski, Translation of the monograph “Variational methods in the theory of Dirichlet problems, WNT, Warszawa 1994, pp. 1-200.
  66. Stanisław Walczak, Dariusz Idczak, On the existence of a solution for some distributed control hyperbolic system, Bull. Polish Acad. Sci. ser. Tech.
  67. Stanisław Walczak, Dariusz Idczak, Joanna Matula, The existence of an optimal solution for the two-dimensional continuous control system, Bull. Polish Acad. Sci. ser. Tech., 43 (1995), pp. 235-245.
  68. Stanisław Walczak, Dariusz Idczak, Optimal control hyperbolic systems with bounded variation of controls, Optimal Control of Differential Equations, Marcel Dekker, New York, 1994, pp. 159-171.
  69. Stanisław Walczak, Dariusz Idczak, On Helly’s theorem for functions of several variables and its applications to variational problems, Optimization, 30 (1994), pp. 331-343.
  70. Stanisław Walczak, Dariusz Idczak, K. Kibalczyc, On some optimal control problem for two-dimensional continuous system, Bull. Polish Acad. Sci., Vol. 41, No. 4 (1993), ser. Tech., pp. 371-379.
  71. Stanisław Walczak, Dariusz Idczak, K. Kibalczyc, On an optimization problem with cost of variation of control, Journal Austral. Math. Soc. Ser. B., 36 (1994), pp. 117-131.
  72. Stanisław Walczak, Dariusz Idczak, On the existence of the Carth’eodory solutions for some boundary value problems, Rocky Mountain Journal of Mathematics, Vol. 24, No. 1, Winter 1994, pp. 115-127.
  73. Stanisław Walczak, On the Du Bois-Reymond Lemma for functions of several variables, Bull. Soc. Math. Belgique, 45 (1993) 3, Ser. B, pp. 225-235.
  74. Stanisław Walczak, On some generalization of the fundamental lemma and its applications to differential equations, Bull. Soc. Math. Belgique, 45 (1993) 3, Ser. B, pp. 237-243.
  75. Stanisław Walczak, Urszula Ledzewicz, Generalizations of the Lusternik theorem and their applications to nonsmooth and abnormal problems in optimization and optimal control, Proceedings of the First World Congress of Nonlinear Analysis, Tampa, Florida, August 1992, Walter de Gruyter, Berlin, N. York, 1996.
  76. Stanisław Walczak, Urszula Ledzewicz, On the Lusternik theorem for nonsmooth operators, Nonlinear Analysis, Theory, Methods and Applic., Vol. 22, No. 2 (1994), pp. 121-128.
  77. Stanisław Walczak, Dariusz Idczak, On the controllability of nonlinear Goursat systems, Optimization, Vol. 23 (1992), pp. 91-98.
  78. Stanisław Walczak, Optimality conditions for a Bolza problem governed by a hyperbolic systems of Darboux-Goursat type, Annales Polonici Math., LIII (1991), pp. 7-14.
  79. Stanisław Walczak, On Darboux-Goursat problem in the space of absolutely continuous functions of several variables, Materiały Konferencji w Bronisławowie, 1990.
  80. Stanisław Walczak, Józef Baranowicz, Necessary conditions for the existence of a solution of some extremal problems in the families of holomorphic functions, Demonstratio Mathematica, Vol. XXIII, No. 1 (1990), pp. 139-154.
  81. Stanisław Walczak, Existence theorems for some systems of partial differential equations with discontinuous coefficients, International Conference on Differential Equations and their Applications, Rousse, August 1989.
  82. Stanisław Walczak, On Darboux-Goursat problem, Russian-Polish Conference on Optimal Control, Mińsk, May 1989.
  83. Stanisław Walczak, On the differentiability of absolutely continuous functions of several variables. Remarks on the Rademacher theorem, ibid. Math., 5 (1988), pp. 513-520.
  84. Stanisław Walczak, On the existence of solutions for some systems of partial differential equations. Necessary conditions for optimality, ibid. Tech., No. 7-8 (1988).
  85. Stanisław Walczak, Absolutely continuous functions of several variables and their applications to differential equations, Bull. Polish Acad. Math., Vol. 35, No. 11-12 (1987), pp. 733-744.
  86. Stanisław Walczak, Absolutely continuous functions of several variables and their applications to optimization, Materiały Konferencji w Sulejowie 1989.
  87. Stanisław Walczak, Sufficient condition for the state-constraints reduction in some optimal control problem, System Theory and Mathematical Economics, Proceedings of the Sixth Polish-Italian Symposium, October 1984.
  88. Stanisław Walczak, A note on controllability of nonlinear systems, Mathematical Systems Theory 17 (1984), pp.351-356.
  89. Stanisław Walczak, Optymalizacja układów hiperbolicznych typu Darboux-Goursata, Konferencja Zastosowań Matematyki – Dęblin 1988.
  90. Stanisław Walczak, O zagadnieniu Cauchy’ego dla liniowych równań różniczkowych o pochodnych cząstkowych, Konferencja Zastosowań Matematyki – 1986.
  91. Stanisław Walczak, Józef Baranowicz, On some mathematical programming problem in locally convex space, Bull. Soc. Sci. Lett. Łódź, Vol. XXXVI, 25 (1986).
  92. Stanisław Walczak, Optymalizacja układów ciągłych typu Roessera (in Polish), Konferencja Zastosowań Matematyki, Muszyna 1987.
  93. Stanisław Walczak, On controllability of smooth and nonsmooth dynamical systems, Bull. Soc. Sci. Lett. Łódź, Vol. XXXVI, 28 (1986).
  94. Stanisław Walczak, O sterowalności układów dynamicznych (in Polish), materiały Konferencji w Sielpi 1984.
  95. Stanisław Walczak, On the closedness of a sum of sets in Banach space, Bull. Soc. Sci. Lett. Łódź, Vol. XXXV, 2 (1985), pp.1-12.
  96. Stanisław Walczak, K. Kibalczyc, Necessary optima lity conditions for some control problem, Journal Austral. Math. Soc. Ser. B 26 (1984), pp. 45-55.
  97. Stanisław Walczak, The local extremum principle for problems with constraints upon phase coordinates, Bull. Soc. Sci. Lett. Łódź, Vol. XXXII, 3 (1982), pp. 1-12.
  98. Stanisław Walczak, On some control problem, Acta Univ. Lodz. 1 (1984), pp. 187-196.
  99. Stanisław Walczak, On some properties of cones in normed spacer and their application to investigating extremal problems, Journal of optimization Theory and Applications 42 (1984), pp. 559-582.
  100. Stanisław Walczak, W. Pełczewski, Condition for existence of optimal control belonging to the interior of the given bounded set, Bull. Acad. Polon. Sci. Ser. Sci. Tech., Vol. XXVIII, 3-4 (1980), pp. 175-181.
  101. Stanisław Walczak, Leon Mikołajczyk, On application of the Dubovitskii-Milyutin metod to investigating certain extremal problems, Demontratio Math., No. 2 (1980), pp. 509-530.
  102. Stanisław Walczak, Leon Mikołajczyk, Application of the extremum principle to investigating certain extremal problems, Trans. Amer. Math. Soc., Vol. 259, No. 1 (1980), pp. 147-155.
  103. Stanisław Walczak, Euler-Lagrange’s conditions for controls with bounded variation, Control and Cybernetics, Vol. 8, No. 2 (1979), pp. 87-100.
  104. Stanisław Walczak, Warunki wystarczające lokalnej sterowalności dla układów niegładkich (in Polish), Konferencja Zastosowań Matematyki, Rajgród 1983.
  105. Stanisław Walczak, Zadania optymalizacyjne z ograniczeniami na współrzędne fazowe (in Polish), Konferencja Zastosowań Matematyki, Dąbki 1979.
  106. Stanisław Walczak, Application of the extremum principle to investigating certain extremum problems, International Conference on Analytic functions, Kozubnik 1979.
  107. Stanisław Walczak, Warunki Eulera-Lagrange’a dla sterowań z ograniczoną wariacją (in Polish), Konferencja Zastosowań Matematyki, Bukowiec 1975.
  108. Stanisław Walczak, Application of extremum principle to examining some extremal problems, Ann. Polon. Math. 33, No. 1-2 (1974), pp. 193-194.
  109. Stanisław Walczak, W. Pełczewski, Method for determining the nonexistence of common points of optima trajectory and state constraints set bondary, ibid., Vol. XXVII, 5-6 (1979), pp. 537-544.
  110. Stanisław Walczak, Theorems on the number of switching’s for linear analytical systems, Bull. Acad. Polon. Sci. Ser. Sci. Tech., Vol. XXVI, 6 (1978), pp. 617-624.
  111. Stanisław Walczak, Euler-Lagrange conditions for controls with bounded variation, Bull. Polon. Sci. Ser. Sci. Math. Astr. et Phys., Vol. XXVI, 2 (1978), pp. 125-128.
  112. Stanisław Walczak, Investigation of conditional extrema in the class of Hardy functions and in the family of univalent functions II, Bull. Soc. Sci. Lett. Łódź, Vol. XXVIII, 1 (1978).
  113. Stanisław Walczak, Investigation of conditional extrema in the class of Hardy functions and in the family of univalent functions I, Bull. Soc. Sci. Lett. Łódź, Vol. XXVII, 7 (1977).
  114. Stanisław Walczak, E. Olejniczak, Functions holomorphes aux parties réeles limitées, Acta Universitatis Lodziensis 1977.
  115. Stanisław Walczak, Andrzej Nowakowski, Materiały III Konferencji Szkoleniowej Funkcji Analitycznych w Podlesicach, 1977 (in Polish).
  116. Stanisław Walczak, Investigations of conditional extrema in the families of functions defined by Lebesque’s and Stieltje’s integrals, Bull. Soc. Sci. Lett. Łódź, Vol. XXVI, 8 (1976).
  117. Stanisław Walczak, Method of examining conditional extrema in some families of complex functions, Bull. Polon. Sci. Ser. Sci. Math. Astr. et Phys., Vol. XXIV, 11 (1976), pp. 961-968.
  118. Stanisław Walczak, Metoda badania ekstremów warunkowych w pewnych rodzinach funkcji zespolonych (In Polish). Acta Universitatis Lodziensis 1975.
  119. Stanisław Walczak, O niektórych metodach teorii jednolistnych funkcji (in Polish), materiały Konferencji Szkoleniowej Funkcji Analitycznych – Uniejów 1969.
  120. Stanisław Walczak, On some problem of linear time optima control, Bull. Polon. Sci. Ser. Sci. Tech., Vol. 23 (1975), pp. 15-20.
  121. Stanisław Walczak, On some problem of the variational calculus, Bull. Soc. Sci. Lett. Łódź, Vol. XXIV, 11 (1974), pp. 1-10.
  122. Stanisław Walczak, Regular functions with bounded real part, Acta Univ. Lodz. 10 (1977), pp. 201-208.
  123. Stanisław Walczak, Typical-real functions in the exterior of the unit circle, Commentationes Mathematicae XVII (1974), pp. 513-531.
  124. Stanisław Walczak, The radius of conformity of some classes of regular functions, ibid. XXVII (1973), pp. 189-196.
  125. Stanisław Walczak, Extremal problems in the class of close-to-convex functions, Annales Polonici Math. XXV (1971), pp. 23-39.
  126. Stanisław Walczak, Oszacowanie |f”(z0)|, |f”’(z0)|, |f””(z0)| funkcji klasy S (in Polish), Zeszyty naukowe UŁ, Seria II (1970), pp. 69-73.