Publikacje Katedry Algorytmów i Baz Danych

Prof. nadzw. dr hab. Tadeusz Antczak

Publikacje w czasopismach i monografiach:

  1. Tadeusz Antczak, (p,r)-invex sets and functions, Journal Mathematical Analysis and Applications 263 (2001) 355-379.
  2. Tadeusz Antczak, On (p,r)-invexity-type nonlinear programming problems, Journal Mathematical Analysis and Applications 264 (2001) 382-397.
  3. Tadeusz Antczak, A sufficient condition for optimality in nondifferentiable invex programming, Control and Cybernetics 30 (2001) 431-438.
  4. Tadeusz Antczak, Multiobjective programming with (p,r)-invexity – Zeszyty Naukowe Politechniki Rzeszowskiej Nr 190, Matematyka z.25, (2001) 5-30.
  5. Tadeusz Antczak, Fractional programming with (p,r)-invexity, Zeszyty Naukowe Politechniki Rzeszowskiej Nr 190, Matematyka z.25, (2001) 31-46.
  6. Tadeusz Antczak, Tadeusz Antczak, A sufficient condition for optimality in nondifferentiable invex programming, Control and Cybernetics 30 (2001) 431-438.
  7. Tadeusz Antczak, Multiobjective programming under d-invexity, European Journal of Operational Research 137 (2002) 28-36.
  8. Tadeusz Antczak, Lipschitz r-invex functions and nonsmooth programming, Numerical Functional Analysis and Optimization 23 (2002) 265-284.
  9. Tadeusz Antczak, Generalized (p,r)-invexity in mathematical programming, Numerical Functional Analysis and Optimization 24 (2003) 437-454.
  10. Tadeusz Antczak, A class of B-(p,r)-invex functions and mathematical programming, Journal of Mathematical Analysis and Applications 286 (2003) 187-206.
  11. Tadeusz Antczak, A new approach to multiobjective programming with a modified function, Journal of Global Optimization 27 (2003) 485-495.
  12. Tadeusz Antczak, (p,r)-invexity in multiobjective programming, European Journal of Operational Research 152 (2004) 72-87.
  13. Tadeusz Antczak, Minimax programming under (p,r)-invexity, European Journal of Operational Research 158 (2004) 1-19.
  14. Tadeusz Antczak, B-(p,r)-pre-invex functions, Folia Mathematica Acta Universitatis Lodziensis folia Mathematica 11 (2004) 3-15.
  15. Tadeusz Antczak, An eta-approximation approach for nonlinear mathematical programming problems involving invex functions, Numercial Functional Analysis and Optimization 25 (2004) 423-438.
  16. Tadeusz Antczak, Saddle points criteria and duality in multiobjective programming via an eta-approximation method, Journal of the Australian Mathematical Society Series B 47 (2005) 155-172.
  17. Tadeusz Antczak, A new method of solving nonlinear mathematical programming problems involving r-invex functions, Journal of Mathematics Analysis and Applications 311 (2005) 313-323.
  18. Tadeusz Antczak, Relationships between pre-invex concepts, Nonlinear Analysis: Theory, Methods & Applications 60 (2005) 349-367.
  19. Tadeusz Antczak, The notion of V-r-invexity in differentiable multiobjective programming, Journal of Applied Analysis 11 (2005) 63-79.
  20. Tadeusz Antczak, Mean value in invexity analysis, Nonlinear Analysis 60 (2005) 1473-1484.
  21. Tadeusz Antczak, Modified ratio objective approach in mathematical programming, Journal of Optimization, Theory and Applications 126 (2005) 23-40.
  22. Tadeusz Antczak, r-pre-invexity and r-invexity in mathematical programming, Computers & Mathematics with Applications 50 (2005) 551-566.
  23. Tadeusz Antczak, An h-approximation approach to duality in mathematical programming problems involving r-invex functions, Journal of Mathematics Analysis and Applications 315 (2006), 555-567.
  24. Tadeusz Antczak, A modified objective function method for solving nonlinear multiobjective fractional programming problems, Journal of Mathematics Analysis and Applications 322 (2006), 971-989.
  25. Tadeusz Antczak, An h-approximation approach in nonlinear vector optimization with univex functions, Asia-Pacific Journal of Operational Research 23 (2006) 525-542.
  26. Tadeusz Antczak, New optimality conditions and duality results of G-type in differentiable mathematical programming, Nonlinear Analysis, Theory, Methods and Applications 66 (2007) 1617-1632.
  27. Tadeusz Antczak, Krzystzof Kisiel, Strict minimizer of order m in nonsmooth optimization problems, Commentationes Mathematicae Universitatis Carolinae 47 (2006) 213-232.
  28. Tadeusz Antczak, A modified objective function method in mathematical programming with second order invexity, Numerical Functional Analysis and Optimization 28 (2007) 1-13.
  29. Tadeusz Antczak, Second order convexity and a modified objective function method in mathematical programming, Control and Cybernetics 36 (2007) 161-182.
  30. Tadeusz Antczak, Saddle-point criteria in an h-approximation method for nonlinear mathematical programming problems involving invex functions, Journal of Optimization, Theory and Applications 132 (2007) 71-87.
  31. Tadeusz Antczak, G-pre-invex functions in mathematical programming, Journal of Computational and Applied Mathematics 217 (2008) 212-226.
  32. Tadeusz Antczak, Generalized fractional minimax programming with B-(p, r)-invexity, Computers and Mathematics with Applications 56 (2008) 1505–1525
  33. Tadeusz Antczak, An h-approximation method for nonsmooth multiobjective programming problems, Anziam Journal 49 (2008) 309-323.
  34. Tadeusz Antczak, Characterizations of solvability of nonlinear nonconvex vectorial optimization problems in Banach spacer by h-approximation approach, Folia Mathematica 14 (2007) 3-16.
  35. Tadeusz Antczak, A second order h-approximation method for constrained optimization problems involving second order invex functions, Applications of Mathematics 54 (2009) 433-445.
  36. Tadeusz Antczak, New saddle points criteria in multiobjective programming with G-invex functions via an h-approximation method, International Journal of Optimization: Theory, Methods and Applications 1 (2009) 123-139.
  37. Tadeusz Antczak, Generalized B-(p,r)-invexity functions and nonlinear mathematical programming, Numerical Functional Analysis and Optimization 30 (2009) 1-22.
  38. Tadeusz Antczak, On G-invex multiobjective programming. Part I. Optimality, Journal of Global Optimization 43 (2009) 97-109.
  39. On G-invex multiobjective programming. Part II. Duality, Journal of Global Optimization 43 (2009) 111-140.
  40. Tadeusz Antczak, Optimality and duality for nonsmooth multiobjective programming problems with V-r-invexity, Journal of Global Optimization 45 (2009) 319-334.
  41. Tadeusz Antczak, Optimality conditions and duality for nondifferentiable multiobjective programming problems involving d-r-type I functions, Journal of Computational and Applied Mathematics 225 (2009) 236-250.
  42. Tadeusz Antczak, Penalty function methods and a duality gap for invex optimization problems, Nonlinear Analysis 71 (2009) 3322-3332.
  43. Tadeusz Antczak, Exact penalty functions method for mathematical programming problems involving invex functions, European Journal of Operational Research 198 (2009) 29-36.
  44. Tadeusz Antczak, Saddle points criteria in nondifferentaible multiobjective programming with V-invex functions via an h-approximation method, Computers and Mathematics with Applications 60 (2010) 2689-2700.
  45. Tadeusz Antczak, The l₁ penalty function method for nonconvex differentiable optimization problems with inequality constraints, Asia-Pacific Journal of Operational Research 27 (2010) 1-18.
  46. Tadeusz Antczak, Proper efficiency and duality for differentiable multiobjective programming problems with B-(p,r)-invex functions, rozdział 5 w monografii: M.Arana Jiménez, G.R.Garzón, A.R.Lizana (Eds.), Optimality conditions in vector optimization, Bentham e-Books 2010, str.75-96
  47. Tadeusz Antczak, A new exact exponential penalty function method and nonconvex mathematical programming, Applied Mathematics and Computation 217 (2011) 6652-6662.
  48. Tadeusz Antczak, A new characterization of (weak) Pareto optimality for differentiable vector optimization problems with G-invex functions, Mathematical and Computer Modelling 54 (2011) 59-68.
  49. Tadeusz Antczak, Aleksandra Stasiak, (Φ,ρ)-invexity in nonsmooth optimization, Numerical Functional Analysis and Optimization 32 (2011) 1-25.
  50. Tadeusz Antczak, Nonsmooth minimax programming under locally Lipschitz (F,r)-invexity, Applied Mathematics and Computation 217 (2011) 9606-9624.
  51. Tadeusz Antczak, Characterization of vector strict global minimizers of order 2 in differentiable vector optimization problems under a new approximation method, Journal of Computational and Applied Mathematics 235 (2011) 4991-5000.
  52. Tadeusz Antczak, Saddle points criteria via a second order h-approximation approach for nonlinear mathematical programming involving second order invex functions, Kybernetika 47 (2011) 222-240.
  53. Tadeusz Antczak, The l1 exact G-penalty function method and G-invex mathematical programming problems, Mathematical and Computer Modelling 54 (2011) 1966-1978.
  54. Tadeusz Antczak, Proper efficiency conditions and duality results for nonsmooth vector optimization in Banach spaces under (Φ,ρ)-invexity, Nonlinear Analysis 75 (2012) 3107-3121.
  55. Tadeusz Antczak, The vector exact l1 penalty method for nondifferentiable convex multiobjective programming problems, Applied Mathematics and Computation 218 (2012) 9095-9106.
  56. Tadeusz Antczak, The exact l1 penalty function method for constrained nonsmooth invex optimization problems. System modeling and optimization, pp.461-470, IFIP Adv. Inf. Commun. Technol., 391, Springer, Heidelberg, 2013.
  57. Tadeusz Antczak, Nondifferentiable (Φ,ρ)-type I and generalized (Φ,ρ)-type I functions in nonsmooth vector optimization, Journal of Applied Analysis 19 (2013) 247-270.
  58. Tadeusz Antczak, A lower bound for the penalty parameter in the exact minimax penalty function method for solving nondifferentiable extremum problems, Journal of Optimization, Theory and Applications 159 (2013) 437-453.
  59. Tadeusz Antczak, Saddle point criteria and the exact minimax penalty function method in nonconvex programming, Taiwanese Journal of Mathematics 17 (2013) 559-581.
  60. Tadeusz Antczak, Singh, Vinay Optimality and duality for minimax fractional programming with support functions under B-(p,r)-Type I assumptions, Mathematical and Computer Modelling 57 (2013) 1083-1100.
  61. Ariana Pitea, Tadeusz Antczak, Proper efficiency and duality for a new class of nonconvex multitime multiobjective variational problems, Journal of Inequalities and Applications (2014) 2014:333, 20 pp.
  62. Tadeusz Antczak, Second order duality results for multiobjective programming problems under second order (Φ,ρ)-invexity, Journal of Advances Mathematical Studies 7 (2014) 104-122.
  63. Tadeusz Antczak, Manue Arana Jiménez, l Sufficient optimality criteria and duality for multiobjective variational control problems with B-(p,r)-invex functions, Opuscula Mathematica 34 (2014) 665-682.
  64. Tadeusz Antczak, Duality for multiobjective variational control problems with (Φ,ρ)-invexity, Calcolo 51 (2014) 393-421.
  65. Tadeusz Antczak, On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems, Journal of Global Optimization 59 (2014) 757-785.
  66. Tadeusz Antczak, On nonsmooth (Φ,ρ)-invex multiobjective programming in finite-dimensional Euclidean spaces, Journal of Advances Mathematical Studies 7 (2014) 127-145.
  67. Tadeusz Antczak, (F,r)-monotonicity and generalized (F,r)-monotonicity. Taiwanese Journal of Mathematics 18 (2014) 237-255.
  68. Tadeusz Antczak, G. J. Zalmai, Second order (Φ,ρ)-V-invexity and duality for semi-infinite minimax fractional programming. Applied Mathematics and Computation 227 (2014) 831-856.
  69. Tadeusz Antczak, Comments on “Sufficiency and duality for multiobjective variational control problems with G-invexity” Computers and Mathematics with Applications 63, 838-850 (2012). Computers and Mathematics with Applications 66 (2014) 2595-2596.
  70. Tadeusz Antczak, On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems, Journal of Global Optimization 59 (2014) 754-785.
  71. Tadeusz Antczak, Małgorzata Tartanus, Relational database supporting experiments connected with plant protection, Agricultural Engineering 3(151) (2014) 203-212.
  72. Tadeusz Antczak, Exactness of penalization for exact minimax function method in nonconvex programming, Applied Mathematics and Mechanics-English Edition 36 (2015) 541-556.
  73. Tadeusz Antczak, Parametric saddle point criteria in semi-infinite minimax fractional programming problems under (p,r)-invexity, Numerical Functional Analysis and Optimization 36 (2015) 1-28.
  74. Tadeusz Antczak, Sufficient optimality criteria and duality for multiobjective variational control problems with G-type I functions, Journal of Global Optimization 61 (2015) 695-720.
  75. Tadeusz Antczak, Manuel Arana Jimenez, On G-invexity-type nonlinear programming problems, An International Journal of Optimization and Control: Theories & Applications (IJOCTA) 5 (2015) 13-20.
  76. Tadeusz Antczak, Małgorzata Tartanus, Daniel Sas, Model systemu doradczego wspomagającego ochronę roślin sadowniczych, Elektronika – Konstrukcje, Technologie, Zastosowania 5 (2015) 46-49.
  77. Tadeusz Antczak, Ariana Pitea, Parametric approach to multitime multiobjective fractional variational problems under (F,r)-convexity, Optimal Control Applications & Methods 37 (2016) 831-847.
  78. Tadeusz Antczak, The exact absolute value penalty function method for identifying strict global minima of order m in nonconvex nonsmooth programming, Optimization Letters 10 (2016) 1561-1576.
  79. Tadeusz Antczak, Optimality conditions in quasidifferentiable vector optimization, Journal of Optimization, Theory and Applications 171 (2016) 708-725.
  80. Tadeusz Antczak, Marcin Studniarski, The exactness property of the vector exact l1 penalty function method in nondifferentiable invex multiobjective programming, Numerical Functional Analysis and Optimization 37 (2016) 1465-1487.
  81. Tadeusz Antczak, S.K.Mishra, B.B.Upadhyay, First order duality for a new class of nonconvex semi-infinite minimax fractional programming problems, Journal of Advances Mathematical Studies 9 (2016) 132-162.
  82. Tadeusz Antczak, Gabriel Ruiz-Garzón, On semi-G-V -type I concepts for directionally differentiable multiobjective programming problems, An International Journal of Optimization and Control: Theories & Applications 6 (2016) 189-203.
  83. Tadeusz Antczak, Multiobjective programming under nondifferentiable G-V-invexity, Filomat 30(11) (2016) 2909-2923.
  84. Tadeusz Antczak, Sufficient optimality conditions for semi-infinite multiobjective fractional programming under (φ, ρ)-V-invexity and generalized (φ, ρ)-V-invexity, Filomat 30(16) (2016) 2649-3665.
  85. Tadeusz Antczak, Manuel Arana Jimenez, KT-G-invexity in multiobjective programming, International Journal of Mathematics and Computation 27 (2016) 23-39.
  86. Tadeusz Antczak, Anurag Jayswal, Shalini Jha, Characterizations of solvability of convex fuzzy optimization problem via the modified objective function method, PanAmerican Mathematical Journal 26 (2016) 1-15.
  87. Tadeusz Antczak, On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems, Computational & Applied Mathematics 36 (2017) 1299-1314.
  88. Tadeusz Antczak, Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function, Acta Mathematica Scientia 37B(4) (2017) 1133-1150.
  89. Tadeusz Antczak, η-approximation method for non-convex multiobjective variational problems, Numerical Functional Analysis and Optimization 38:9 (2017) 1125-1142.
  90. Tadeusz Antczak, Vinay Singh, Sufficient optimality conditions and Mond-Weir duality for quasidifferentiable optimization problems with univex functions, University Politehnica of Bucharest Scientific Bulletin Series A-Applied Mathematics and Physics 79(1) (2017) 185-196.
  91. Tadeusz Antczak, Saddle point criteria in semi-infinite minimax fractional programming under (F,r)-invexity, Filomat 31 (2017) 2557-2574.
  92. Tadeusz Antczak, Ram Verma, Parametric duality results for semi-infinite multiobjective fractional programming under (F,r)-V -invexity and generalized (F,r)-V –invexity, Advances in Nonlinear Variational Inequalities 20 (2017) 58-92.
  93. Tadeusz Antczak, Ram Verma, New class of duality models in discrete minmax fractional programming based on second-order univexities, Statistics, Optimization and Information Computing 5 (2017) 262-277.
  94. Tadeusz Antczak, Chapter 3: Saddle points criteria for a new class of nonconvex nonsmooth discrete minimax fractional programming problems, w: Albert R. Baswell (Editor) Advances in Mathematical Research Vol.23, Nova Science Publishers Inc., New York (2017) 97-125.
  95. Manuel Arana Jiménez, Tadeusz Antczak, The minimal criterion for the equivalence between local and global optimal solutions in nondifferentiable optimization problem, Mathematical Methods in the Applied Sciences 40 (2017) 6556-6564

Opublikowane komunikaty zjazdowe międzynarodowe (abstrakty)

  1. Tadeusz Antczak, Warunek konieczny optymalności dla zadań optymalizacji niegładkiej z ograniczeniami typu równość, The International Conference of the Theory and Methods of Optimization and Their Applications, Spała 1994, Wydawnictwo Uniwersytetu Łódzkiego 1995.
  2. Tadeusz Antczak, Invexity in optimization theory, Proceedings of the Fifth Environmental Mathematical Conference Lesko 1998, Redakcja Wydawnictw KUL, Lublin 1999.
  3. Tadeusz Antczak, (p,r)-niezmiennicza wypukłość w programowaniu matematycznym, VI Środowiskowa Konferencja Matematyczna Rzeszów – Lublin – Krynica 10-14 XI 1999.
  4. Tadeusz Antczak, Fractional programming with (p, r) – invexity, VII Środowiskowa Konferencja Matematyczna, Rzeszów – Lublin – Iwonicz Zdrój 8-12 XI 2000.
  5. Tadeusz Antczak, The l₁ penalty function method for nonconvex mathematical programming problems, International Conference Convexity & Applications Iwonicz Zdrój September 5-10, 2010.
  6. Tadeusz Antczak, The l1 exact penalty function method for nonconvex mathematical programming problems, 25th IFIP TC7 Conference on System Modeling and Optimization, Berlin, September 12-16, 2011.
  7. Tadeusz Antczak, The exact l1 penalty function method for vector optimization problems, 25th European Conference on Operational Research, Vilnus, Lithuania, July 8-11, 2012.
  8. Tadeusz Antczak, Saddle point criteria and duality for a new class of nonconvex nonsmooth multiobjective programming problems, Book of Abstracts, 26th European Conference on Operational Research, Rome, Italy, 1-4 Lipiec 2013.
  9. Tadeusz Antczak, Nonconvex nondifferentiable multiobjective programming via the vector exact exponential penalty function, Book of Abstracts, 27th European Conference on Operational Research, Glasgow, 12-15 July, 2015.
  10. Tadeusz Antczak, Vector critical points and efficiency in nondifferentiable constrained vector optimization problems, Book of Abstracts, 28th European Conference on Operational Research, Poznań, 3-6 July, 2016.

Dr Michał Bleja

 Rozprawa doktorska

  1. M.Bleja „Optimization of Queries Having Weakly Dependent Subqueries”, Oficyna Wydawnicza Politechniki Warszawskiej, 159 stron, Warszawa 2012.

Konferencje międzynarodowe

  1. M.Drozd, M.Bleja, K.Stencel, K.Subieta: Optimization of Object-Oriented Queries Through Pushing Selections. The 16th East-European Conference on Advances in Databases and Information Systems (ADBIS 2012, Poznań). Advances in Intelligent Systems and Computing, ISSN 2194-5357 no 186, ISBN:  978-3-642-32740-7,  Springer 2013, pp. 57-68.
  2. T.Kowalski, R.Adamus, J.Wislicki, M.Bleja: Generalized Independent Subqueries Method. Proceedings of the 14th International Conference on Enterprise Information Systems ICEIS (1) 2012, pp. 200-203.
  3. Bleja, T.Kowalski, K.Subieta: Optimization of Object-Oriented Queries through Rewriting Compound Weakly Dependent Subqueries. The 21st International Conference on Database and Expert Systems Applications (DEXA 2010, Spain), LNCS 6261 Springer, pp. 323-330.
  4. Bleja, K.Stencel, K.Subieta: Optimization of Object-Oriented Queries Addressing Large and Small Collections. Proceedings of the International Multiconference on Computer Science and Information Technology (Volume 4, 2009), pp.643-650.
  5. Bleja, T.Kowalski, R.Adamus, K.Subieta: Optimization of Object-Oriented Queries Involving Weakly Dependent Subqueries. International Conference on Object Databases (ICOODB 2009, Switzerland), LNCS 5936 Springer 2010, pp. 77-94.

Konferencje krajowe

  1. M.Bleja: Overview and implementing SQL server high availability solutions. Information Systems in Management 2016, Vol. 5 No. 4 p-ISSN: 2084-5537, pp. 463-472.
  2. M.Bleja: Adapting SBA Optimization Methods Devoted To Queries Having Subqueries Typed by Enumerations For XQuery Expressions. Information Systems in Management 2015, Vol. 4 No. 1 p-ISSN: 2084-5537, pp. 3-13.
  3. M.Bleja, T.Kowalski, R.Adamus: Enumerated Types in Object-Oriented Query Language SBQL. III Krajowa Konferencja Naukowa Technologie Przetwarzania Danych, Poznań 2010, WNT, pp. 99-111.
  4. R.Adamus, T.Kowalski, K.Kuliberda, J.Wiślicki, M.Bleja: Tools Supporting Generation of Data-Intensive Applications for a Web Environment. AUTOMATYKA, 2010, rocznik 14, nr 3, s. 951-960.

Abstrakty

  1. M.Bleja: Przegląd i implementacja mechanizmów wysokiej dostępności w oparciu o SQL Server. X Konferencja Naukowa ISIM (Information Systems in Management), SGGW, Warszawa 2015
  2. M.Bleja: Optymalizacja zapytań zorientowanych obiektowo posiadających podzapytania typowane przez wyliczenia. IX Konferencja Naukowa ISIM (Information Systems in Management), SGGW, Warszawa 2014

Dr Witold Budzisz

  1. Witold Budzisz, On the analogue of elliptical symmetry for some subclass of operator stable measures, Bull. De la Soc. Des Scienc. (1996).
  2. Witold Budzisz, Quasi-elliptical symmetry and decomposability by the pair of probability measures, Folia Mathematica.
  3. Witold Budzisz, Quasi-elliptical symmetry and decomposability by the pair of probability measures, Acta Universitatis Lodziensis – Folia Mathematica 9(1997), 3-12.
  4. Witold Budzisz, Odkrywanie i rozwiązywanie problemów matematycznych związanych z zagadnieniem systemu wymiany, Informatyka w szkole, Katowice, 24-27.09.199,9 XV, 1999, 248-253.

Prof. Ludmila Koliechkina

  1. Ludmila Kolieсhkina Graph and Euсlidean сombinatorial approaсhes to the subset sum problem, in: ABSTRACTS Bedlewo, September 19-23, 6th Polish Combinatorial Conferenсe. 2016, 34.
  2. A. Donets, L.N. Kolechkina An approach solution extreme problems on combinatorial configurations in graphs The theory of optimal solutions, No1. (2016),  142-147.
  3. N. Koliechkina, O. A. Dvirna Solving Extremum Problems with Linear Fractional Objective Functions on the Combinatorial Configuration of Permutations Under Multicriteriality – Cybernetics and Systems Analysis, Vol. 53, No 4 (2017), 590–599.
  4. N. Koliechkina, O. A. Dvirna Approach to solving vector problems with fractional linear goal functions on the combinatorial permutation configuration, in: 4-th International Сonference on Computational Intelligence (ComInt 2017) Taras Shevchenko National University of Kyiv, May 16-18, 2017, 124.

Dr Aleksandra Stasiak

  1. Aleksandra Stasiak, Tadeusz Antczak; (Φ,ρ)-Invexity in Nonsmooth Optimization, Numerical Functional Analysis and Optimization; 32:1 (2011); 1-25.
  2. Rahmo, E.-D., Aleksandra Stasiak, Marcin Studniarski, Lower and upper Ginchev derivatives of vector functions and their applications to multiobjective optimization. Optim. Lett. 8 (2014), no. 2, 653–667.

 Prof. dr hab. Marcin Studniarski

  1. Studniarski, M.: Application of the Dubovitskii-Milyutin method to some locally convex extremal problems. Bull. Soc. Sci. Lett. Łódź 29 (1979), no. 6, 1-8.
  2. Studniarski, M.: Regularly locally convex functions on the Cartesian product of two spaces. Bull. Soc. Sci. Lett. Łódź 29 (1979), no. 7, 1-10.
  3. Studniarski, M.: Necessary optimality conditions for a nonsmooth discrete control problem. Control Cybernet. 11 (1982), no. 3-4, 109-119.
  4. Studniarski, M.: Mean value theorems and sufficient optimality conditions for nonsmooth functions. J. Math. Anal. Appl. 111 (1985), no. 2, 313-326.
  5. Studniarski, M.: Mean value theorem for functions possessing first order convex approximations. Applications in optimization theory. Z. Anal. Anwendungen 4 (1985), no. 2, 125-132.
  6. Studniarski, M.: Necessary and sufficient conditions for isolated local minima of nonsmooth functions. SIAM J. Control Optim. 24 (1986), no. 5, 1044-1049.
  7. Studniarski, M.: Necessary optimality conditions for two-dimensional control systems described by Roesser’s model. In: V Polish-English Seminar on Real-Time Process Control, Radziejowice, September 8-12, 1986, Warsaw Technical University, Institute of Control and Industrial Electronics, 366-377.
  8. Studniarski, M.: Sufficient conditions for the stability of local minimum points in nonsmooth optimization. Optimization 20 (1989), no. 1, 27-35.
  9. Studniarski, M.: An algorithm for calculating one subgradient of a convex function of two variables. Numer. Math. 55 (1989), no. 6, 685-693.
  10. Studniarski, M.: A simple derivation of sufficient conditions for a local minimum of a Lipschitzian function. Demonstratio Math. 22 (1989), no. 1, 73-78.
  11. Studniarski, M. Sufficient optimality conditions in terms of the usual gradients for nondifferentiable programming problems. Control Cybernet. 18 (1989), no. 1, 7-18.
  12. Baranowicz, J., Studniarski, M.: A locally convex extremal problem over some family of complex functions. Math. Nachr. 146 (1990), 117-125.
  13. Studniarski, M.: Second-order necessary conditions for optimality in nonsmooth nonlinear programming. J. Math. Anal. Appl. 154 (1991), no. 2, 303-317.
  14. Studniarski, M.: The discrete maximum principle as a sufficient optimality condition. Problems Control Inform. Theory/Problemy Upravlen. Teor. Inform. 20 (1991), no. 3, 179-186.
  15. Studniarski, M., Jeyakumar, V.: A generalized mean-value theorem and optimality conditions in composite nonsmooth minimization. Nonlinear Anal. 24 (1995), no. 6, 883-894.
  16. Studniarski, M., Yang, X.Q.: Second-order necessary optimality conditions via directional regularity. Optimization 37 (1996), no. 2, 113-124.
  17. Studniarski, M.: Characterizations of strict local minima for some nonlinear programming problems. Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996). Nonlinear Anal. 30 (1997), no. 8, 5363-5367.
  18. Studniarski, M.: Necessary optimality conditions for nonsmooth two-dimensional control systems described by Roesser’s model. Control Cybernet. 27 (1998), no. 1, 51-61.
  19. Studniarski, M.: Characterizations of weak sharp minima of order one in nonlinear programming. Systems modelling and optimization (Detroit, MI, 1997), 207-215, Chapman & Hall/CRC Res. Notes Math., 396, Chapman & Hall/CRC, Boca Raton, FL, 1999.
  20. Studniarski, M., Ward, D.E.: Weak sharp minima: characterizations and sufficient conditions. SIAM J. Control Optim. 38 (1999), no. 1, 219-236.
  21. Mikołajczyk, L., Studniarski, M.: Higher-order necessary optimality conditions for extremum problems in topological vector spaces. Topol. Methods Nonlinear Anal. 15 (2000), no. 1, 129-139.
  22. Studniarski, M.: On weak sharp minima for a special class of nonsmooth functions. German-Polish Conference on Optimization – Methods and Applications (Żagań, 1999). Discuss. Math. Differ. Incl. Control Optim. 20 (2000), no. 2, 195-207.
  23. Studniarski, M., Taha, A.W.A.: A characterization of strict local minimizers of order one for nonsmooth static minmax problems. J. Math. Anal. Appl. 259 (2001), no. 2, 368-376.
  24. Studniarski, M. Higher-order necessary optimality conditions in terms of Neustadt derivatives.: Nonlinear Anal. 47 (2001), 363-373.
  25. Studniarski, M., Taha, A.W.A.: Stability properties of weak sharp minima. Control Cybernet. 32 (2003), no. 2, 351−359.
  26. Studniarski, M., Rahmo, E.-D.: Approximating Clarke’s subgradients of semismooth functions by divided differences. Numer. Algor. 43 (2006), 385−392.
  27. Studniarski, M. Weak sharp minima in multiobjective optimization.: Control Cybernet. 36 (2007), no. 4, 925−937.
  28. Studniarski, M.: Stopping criteria for a general model of genetic algorithm. In: Evolutionary Computation and Global Optimization 2009, Prace Naukowe Politechniki Warszawskiej, Elektronika, 169 (2009), 173−181.
  29. Studniarski, M.: Stopping criteria for genetic algorithms with application to multiobjective optimization, In: R. Schaefer et al. (Eds.), Parallel Problem Solving from Nature − PPSN XI, Part I, Lecture Notes in Computer Science 6238 (Springer, 2010), 697−706.
  30. Studniarski, M.: Finding all minimal elements of a finite partially ordered set by genetic algorithm with a prescribed probability. Numerical Algebra, Control and Optimization, 1 (2011), no. 3, 389−398.
  31. Rahmo, E.-D., Studniarski, M.: Higher-order conditions for strict local Pareto minima in terms of generalized lower and upper directional derivatives. J. Math. Anal. Appl. 393 (2012), 212-221.
  32. Studniarski, M.: New characterizations of weak sharp and strict local minimizers in nonlinear programming. Communications in Optimization Theory 1 (2012), no.1, 19-34.
  33. Rahmo, E.-D., Stasiak, A., Studniarski, M.: Lower and upper Ginchev derivatives of vector functions and their applications  to multiobjective optimization. Optim. Lett. 8 (2014), 653-667.
  34. Michalak, A., Studniarski, M.: Necessary and sufficient conditions for a Pareto optimal allocation in a discontinuous Gale economic model. Opuscula Mathematica 34 (2014), no. 4, 827–835.
  35. Antczak, T., Studniarski, M.: The exactness property of the vector exact l1 penalty function method in nondifferentiable invex multiobjective programming. Numerical Functional Analysis and Optimization 37 (2016), no. 12, 1465–1487.
  36. Rahmo, E.-D., Studniarski, M.: A new global scalarization method for multiobjective optimization with an arbitrary ordering cone. Applied Mathematics 8 (2017), 154–163.
  37. Rahmo, E.-D., Studniarski, M.: Generating Epsilon-Efficient Solutions in Multiobjective Optimization by Genetic Algorithm. Applied Mathematics 8 (2017), 395– 409.
  38. Studniarski, M.: Optimization with respect to general preference mappings. Folia Mathematica 19 (2017), no. 1, 50–54.
  39. Michalak, A.,  Studniarski, M.: Higher-order conditions for local equilibria in a discontinuous Gale economic model. Control and Cybernetics 46 (2017), no.1, 37–47.
  40. Studniarski, M., Michalak, A.: A characterization of Q-minimal solutions in set-valued optimization in terms of radial derivatives. In: Proceedings of the 2017 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO), Prague, Czech Republic, 20–22 May 2017, IEEE Computer Society Conference Publishing Services, 2017, 1–3.
  41. Al-Jawadi, R., Studniarski, M., Younus, A.: An evolutionary optimization method based on scalarization for multi-objective problems. In: L. Borzemski et al. (eds.), Information Systems Architecture and Technology: Proceedings of 38th International Conference on Information Systems Architecture and Technology – ISAT 2017, Advances in Intelligent Systems and Computing 655 (Springer, 2018), 48–58.
  42. Al-Jawadi, R., Studniarski, M., Younus, A.: A new genetic algorithm based on dissimilarities and similarities. Computer Science, accepted.

Prof. nadzw. dr hab.  Marek Śmietański

  1. A new algorithms for solving unconstrained optimization problems based on the generalized Newton method involving simple quadrature rules – In: Selected Problems on Experimental Mathematics, E. Hetmaniok, D. Słota, T. Trawiński, R. Wituła (eds.), Wydawnictwo Politechniki Śląskiej, Gliwice 2017, 7-16;
  2. Some quadrature-based versions of the generalized Newton method for solving unconstrained optimization problems – Numerical Analysis and Its Applications, 6th International Conference, NAA 2016, Lozenetz, Bulgaria, June 15-22, 2017, Revised Selected Papers, Lecture Notes in Computer Science, Vol. 10187, 608-616
  3. Marek Śmietański, A perturbed version of an inexact generalized Newton method for solving nonsmooth equations – Numerical Algorithms, Vol. 63 No. 1 (2013), 89-106;
  4. Marek Śmietański, A note on characterization of solution sets for some nonlinear programming problems – Applicable Analysis, Vol. 91 No. 11 (2012), 2095-2104;
  5. Marek Śmietański, Some superlinearly convergent inexact quasi-Newton method for solving nonsmooth equations – Optimization Methods & Software, Vol. 27 No. 3 (2012), 405-417;
  6. Marek Śmietański, Some quadrature-based versions of the generalized Newton method for solving nonsmooth equations – Journal of Computational and Applied Mathematics, Vol.235 No.17 (2011), 5131-5139;
  7. Marek Śmietański, An approximate Newton method for equations with infinite max functions – International Journal of Computer Mathematics, Vol.88 No.11 (2011), 2403-2414;
  8. Marek Śmietański, Convergence of an inexact generalized Newton method with a scaled residual control – Computers & Mathematics with Applications, Vol.61 No.6 (2011), 1624-1632;
  9. Marek Śmietański, An experimental study on XML data processing efficiency in RDBMS based on SQL Server, in: Information Technology in Management and Marketing, M.Kubina et al. (eds.), EDIS, University Publishing House, Žilina 2010, 205-214;
  10. Marek Śmietański, Indexing XML data and the performance of XQuery in relational database based on SQL Server 2008, in: Information Systems in Management VI. Ontologies and Data Base Technologies, P.Jałowiecki, A.Orłowski (eds.), WULS Press, Warsaw 2010, 109-120;
  11. Marek Śmietański, Marcin Drozd, Selected aspects of the integration of XML data with relational data in database systems, in: Information Systems in Management IV, W.Karwowski, A.Orłowski (eds.), WULS Press, Warsaw 2010, 85-93;
  12. Marek Śmietański, Marcin Drozd, Efficiency of XQuery in processing native XML data stored in relational database, in: Information Systems in Management IV, W.Karwowski, A.Orłowski (eds.), WULS Press, Warsaw 2010, 75-84;
  13. Marek Śmietański, Convergence of a generalized Newton and an inexact generalized Newton algorithms for solving nonlinear equations with nondifferentiable terms – Numerical Algorithms, Vol.50 No.4 (2009), 401-415;
  14. Marek Śmietański, XQuery language and other technologies of data querying in relational database based on SQL Server, in: Information Systems in Management II, A.Jakubiec, W.Karwowski, A.Orłowski (eds.), WULS Press, Warsaw 2008, 144-154;
  15. Marek Śmietański, A nonsmooth version of univariate optimization algorithm for locating the nearest extremum – Central European Journal of Mathematics, Vol.6 No.3 (2008), 469-481;
  16. Marek Śmietański, Selected aspects of managing XML data and XQuery language in relational database systems based on SQL Server, in: Scientific Conference Proceedings – Methods and Tools of Software Developing, Szklarska Poręba 2007, B.Hnatkowska, Z.Huzar (eds.), Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2007, 321-332;
  17. Marek Śmietański, Inexact quasi-Newton global convergent method for solving constrained nonsmooth equations – International Journal of Computer Mathematics, Vol.84 No.12 (2007), 1757-1770;
  18. Marek Śmietański, On a new class parametrized Newton-like method for semismooth equations – Applied Mathematics and Computation, Vol.193 No.2 (2007), 430-437;
  19. Marek Śmietański, A generalized Jacobian based Newton method for semismooth block-triangular system of equations – Journal of Computational and Applied Mathematics, Vol.205 No.1 (2007), 305-313;
  20. Marek Śmietański, An approximate Newton method for equations with finite max functions – Numerical Algorithms, Vol.41 No.3 (2006), 219-238;
  21. Marek Śmietański, Kuhn-Tucker type optimality conditions for some class of nonsmooth programming problems – Control and Cybernetics, Vol.32 No.2 (2003), 361-376;