Publikacje Katedry Algorytmów i Baz Danych

Prof. nadzw. dr hab. Tadeusz Antczak

  1. Tadeusz Antczak, (p,r)-invex sets and functions – Journal Mathematical Analysis and Applications 263, (2001) pp.355-379.
  2. Tadeusz Antczak, On (p,r)-invexity-type nonlinear programming problems – Journal Mathematical Analysis and Applications 264, (2001) pp.382-397.
  3. Tadeusz Antczak, A sufficient condition for optimality in nondifferentiable invex programming – Control and Cybernetics Vol.30 (2001) pp.431-438.
  4. Tadeusz Antczak, Multiobjective programming with (p,r)-invexity – Zeszyty Naukowe Politechniki Rzeszowskiej Nr 190, Matematyka z.25, (2001) pp.5-30.
  5. Tadeusz Antczak, Fractional programming with (p,r)-invexity – Zeszyty Naukowe Politechniki Rzeszowskiej Nr 190, Matematyka z.25, (2001) pp.31-46.
  6. Tadeusz Antczak, Tadeusz Antczak, A sufficient condition for optimality in nondifferentiable invex programming – Control and Cybernetics, vol.30 (2001) No.4, pp.431-438.
  7. Tadeusz Antczak, Multiobjective programming under d-invexity – European Journal of Operational Research Vol.137 No.1 (2002) pp.28-36.
  8. Tadeusz Antczak, Lipschitz r-invex functions and nonsmooth programming – Numerical Functional Analysis and Optimization Vol. 23, No.3&4, (2002) pp.265-284.
  9. Tadeusz Antczak, Generalized (p,r)-invexity in mathematical programming – Numerical Functional Analysis and Optimization, Vol.24, Numbers 5&6, (2003), pp.437-454.
  10. Tadeusz Antczak, A class of B-(p,r)-invex functions and mathematical programming – Journal of Mathematical Analysis and Applications 286 (2003), pp.187-206.
  11. Tadeusz Antczak, A new approach to multiobjective programming with a modified function – Journal of Global Optimization, Vol.27, (2003), pp.485-495.
  12. Tadeusz Antczak, (p,r)-invexity in multiobjective programming – European Journal of Operational Research 152 (2004) 72-87.
  13. Tadeusz Antczak, Minimax programming under (p,r)-invexity – European Journal of Operational Research 158 (2004) 1-19.
  14. Tadeusz Antczak, B-(p,r)-pre-invex functions – Folia Mathematica Acta Universitatis Lodziensis folia Mathematica Vol.11, No.1 (2004) 3-15
  15. Tadeusz Antczak, An eta-approximation approach for nonlinear mathematical programming problems involving invex functions – Numercial Functional Analysis and Optimization 25 No.5&6 (2004) 423-438.
  16. Tadeusz Antczak, Relationships between pre-invex concepts – Nonlinear Analysis: Theory, Methods & Applications 60 (2005) 349-367.
  17. Tadeusz Antczak, The notion of V-r-invexity in differentiable multiobjective programming – Journal of Applied Analysis, January (2005)
  18. Tadeusz Antczak, Mean value in invexity analysis – Nonlinear Analysis 60 (2005), 1473-1484.
  19. Tadeusz Antczak, Modified ratio objective approach in mathematical programming – to be published in Journal of Optimization, Theory and Applications Vol.125 No.1, pp.23-40
  20. Tadeusz Antczak, r-pre-invexity and r-invexity in mathematical programming, Computers & Mathematics with Applications
  21. Tadeusz Antczak, Saddle points criteria and duality in multiobjective programming via an eta-approximation method, Journal of the Australian Mathematical Society Series B (2005).
  22. Tadeusz Antczak, A new method of solving nonlinear mathematical programming problems involving r-invex functions, Journal of Mathematics Analysis and Applications (2005).
  23. Tadeusz Antczak, Aleksandra Stasiak, (Φ,ρ)-Invexity in Nonsmooth Optimization, Numerical Functional Analysis and Optimization; 32:1 (2011); 1-25.
  24. Tadeusz Antczak, Proper efficiency conditions and duality results for nonsmooth vector optimization in Banach spaces under (Φ,ρ)-invexity. Nonlinear Anal. 75 (2012), no. 6, 3107–3121.
  25. Tadeusz Antczak, The vector exact l1 penalty method for nondifferentiable convex multiobjective programming problems. Appl. Math. Comput. 218 (2012), no. 18, 9095–9106.
  26. Tadeusz Antczak, The exact l1 penalty function method for constrained nonsmooth invex optimization problems. System modeling and optimization, 461–470, IFIP Adv. Inf. Commun. Technol., 391, Springer, Heidelberg, 2013.
  27. Tadeusz Antczak,  Nondifferentiable (Φ,ρ)-type I and generalized (Φ,ρ)-type I functions in nonsmooth vector optimization. J. Appl. Anal. 19 (2013), no. 2, 247–270. 
  28. Tadeusz Antczak, A lower bound for the penalty parameter in the exact minimax penalty function method for solving nondifferentiable extremum problems. J. Optim. Theory Appl. 159 (2013), no. 2, 437–453.
  29. Tadeusz Antczak, Saddle point criteria and the exact minimax penalty function method in nonconvex programming. Taiwanese J. Math. 17 (2013), no. 2, 559–581.
  30. Tadeusz Antczak, Singh, Vinay Optimality and duality for minimax fractional programming with support functions under B-(p,r)-Type I assumptions. Math. Comput. Modelling 57 (2013), no. 5-6, 1083–1100.
  31. Ariana Pitea, Tadeusz Antczak,  Proper efficiency and duality for a new class of nonconvex multitime multiobjective variational problems. J. Inequal. Appl. 2014, 2014:333, 20 pp.
  32. Tadeusz Antczak, Second order duality results for multiobjective programming problems under second order (Φ,ρ)-invexity. J. Adv. Math. Stud. 7 (2014), no. 2, 104–122.
  33. Tadeusz Antczak, Manue Arana Jiménez, l Sufficient optimality criteria and duality for multiobjective variational control problems with B-(p,r)-invex functions. Opuscula Math. 34 (2014), no. 4, 665–682.
  34. Tadeusz Antczak,  Duality for multiobjective variational control problems with (Φ,ρ)-invexity. Calcolo 51 (2014), no. 3, 393–421.
  35. Tadeusz Antczak,  On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems. J. Global Optim. 59 (2014), no. 4, 757–785.
  36. Tadeusz Antczak,  On nonsmooth (Φ,ρ)-invex multiobjective programming in finite-dimensional Euclidean spaces. J. Adv. Math. Stud. 7 (2014), no. 1, 127–145.
  37. Tadeusz Antczak, (ϕ,ρ)-monotonicity and generalized (ϕ,ρ)-monotonicity. Taiwanese J. Math. 18 (2014), no. 1, 237–255.
  38. Tadeusz Antczak,  G. J. Zalmai,  Second order (Φ,ρ)-V-invexity and duality for semi-infinite minimax fractional programming. Appl. Math. Comput. 227 (2014), 831–856.
  39. Tadeusz Antczak, Comments on “Sufficiency and duality for multiobjective variational control problems with G-invexity” Computers and Mathematics with Applications 63, 838–850 (2012). Comput. Math. Appl. 66 (2014), no. 12, 2595–2596.
  40. Tadeusz Antczak,  Exactness of penalization for exact minimax penalty function method in nonconvex programming. Appl. Math. Mech. (English Ed.) 36 (2015), no. 4, 541–556.
  41. Tadeusz Antczak,  Sufficient optimality criteria and duality for multiobjective variational control problems with G-type I objective and constraint functions. J. Global Optim. 61 (2015), no. 4, 695–720.

Dr Michał Bleja

 Rozprawa doktorska

  1. Bleja „Optimization of Queries Having Weakly Dependent Subqueries”, Oficyna Wydawnicza Politechniki Warszawskiej, 159 stron, Warszawa 2012.

Artykuły opublikowane

Konferencje międzynarodowe

  1. Drozd, M.Bleja, K.Stencel, K.Subieta: Optimization of Object-Oriented Queries Through
  2. Pushing Selections. The 16th East-European Conference on Advances in Databases and Information Systems (ADBIS 2012, Poznań).
  1. Tomasz Marek Kowalski, Radoslaw Adamus, Jacek Wislicki, Michał Bleja: Generalized Independent Subqueries Method. ICEIS (1) 2012: 200-204.
  1. Bleja, T.Kowalski, K.Subieta: Optimization of Object-Oriented Queries through Rewriting
  2. Compound Weakly Dependent Subqueries. The 21st International Conference on Database and Expert Systems Applications (DEXA 2010, Spain), LNCS 6261 Springer, pp. 323-330.
  1. Bleja, K.Stencel, K.Subieta: Optimization of Object-Oriented Queries Addressing Large and Small Collections. Proceedings of the International Multiconferenceon Computer Science and Information Technology (Volume 4, 2009), pp.643-650.
  1. Bleja, T.Kowalski, R.Adamus, K.Subieta: Optimization of Object-Oriented Queries Involving Weakly Dependent Subqueries. International Conference on Object Databases (ICOODB 2009, Switzerland), LNCS 5936 Springer 2010, pp. 77-94.

Konferencje krajowe

  1. Bleja: Adapting SBA Optimization Methods Devoted To Queries Having Subqueries Typed by Enumerations For XQuery Expressions. IX Konferencja Naukowa „Information Systems In Management”, SGGW, Warszawa, 2014 (to be published in 2015).
  1. Bleja, T.Kowalski, R.Adamus: Enumerated Types in Object-Oriented Query Language SBQL. III Krajowa Konferencja Naukowa Technologie Przetwarzania Danych, Poznań 2010, WNT, pp. 99-111.
  1. Adamus, T.Kowalski, K.Kuliberda, J.Wiślicki, M.Bleja: Tools Supporting Generation of Data-Intensive Applications for a Web Environment. AUTOMATYKA, 2010, rocznik 14, nr 3, s. 951-960.

Dr Witold Budzisz

  1. Witold Budzisz, On the analogue of elliptical symmetry for some subclass of operator stable measures, Bull. De la Soc. Des Scienc. (1996).
  2. Witold Budzisz, Quasi-elliptical symmetry and decomposability by the pair of probability measures, Folia Mathematica.
  3. Witold Budzisz, Quasi-elliptical symmetry and decomposability by the pair of probability measures, Acta Universitatis Lodziensis – Folia Mathematica 9(1997), 3-12.
  4. Witold Budzisz, Odkrywanie i rozwiązywanie problemów matematycznych związanych z zagadnieniem systemu wymiany, Informatyka w szkole, Katowice, 24-27.09.199,9 XV, 1999, 248-253.

Dr Aleksandra Stasiak

  1. Aleksandra Stasiak, Tadeusz Antczak; (Φ,ρ)-Invexity in Nonsmooth Optimization, Numerical Functional Analysis and Optimization; 32:1 (2011); 1-25.
  2. Rahmo, E.-D., Aleksandra Stasiak, Marcin Studniarski, Lower and upper Ginchev derivativesof vector functions and their applications to multiobjective optimization. Optim. Lett. 8 (2014), no. 2, 653–667.

 Prof. dr hab. Marcin Studniarski

  1. Marcin Studniarski, Application of the Dubovitskii-Milyutin method to some locally convex extremal problems, Soc. Sci. Lett. Łódź 29 (1979), no. 6, 8 str. 2.
  2. Marcin Studniarski, Regularly locally convex functions on the Cartesian product of two spaces. Bull. Soc. Sci. Lett. Łódź 29 (1979), no. 7, 10 str. 3.
  3. Marcin Studniarski, Różne definicje uogólnionych pochodnych, W: Konferencja naukowo-szkoleniowa nt. „Teoria Zagadnień Ekstremalnych”. Materiały szkoleniowe przeznaczone dla uczestników III Konferencji organizowanej w roku 1982 przez Instytut Matematyki Uniwersytetu Łódzkiego, Łódź 1982, 37-50.
  4. Marcin Studniarski, Necessary optimality conditions for a nonsmooth discrete control problem, Control Cybernet.11 (1982), no. 3-4, 109-119.
  5. Marcin Studniarski, Mean value theorems and sufficient optimality conditions for nonsmooth functions, C. R. Acad. Bulgare Sci.37 (1984), no. 12, 1609-1611.
  6. Marcin Studniarski, Mean value theorems and sufficient optimality conditions for nonsmooth functions, J. Math. Anal. Appl.111 (1985), no. 2, 313-326.
  7. Marcin Studniarski, Mean value theorem for functions possessing first order convex approximations, Applications in optimization theory. Z. Anal. Anwendungen (1985), no. 2, 125-132.
  8. Marcin Studniarski, Twierdzenia o wartości średniej i warunki optymalności wyższych rzędów w analizie niegładkiej, W: VII Konferencja Szkoleniowa z Teorii Zagadnień Ekstremalnych. Materiały szkoleniowe przeznaczone dla uczestników VII Konferencji organizowanej w roku 1986 przez Instytut Matematyki Uniwersytetu Łódzkiego, Łódź 1985, 150-156.
  9. Marcin Studniarski, Necessary and sufficient conditions for isolated local minima of nonsmooth functions, SIAM J. Control Optim. (1986), no. 5, 1044-1049.
  10. Marcin Studniarski, Necessary optimality conditions for two-dimensional control systems described by Roesser’s model, W: V Polish-English Seminar on Real Time Process Control, Radziejowice, September 8-12, 1986, Warsaw Technical University, Institute of Control and Industrial Electronics, 366-377.
  11. Marcin Studniarski, X.Q. Yang, Second-order necessary optimality conditions via directional regularity, Optimization, 1996, Vol. 31, 113-124.
  12. Marcin Studniarski, Characterizations of strict local minima for some nonlinear programming problems, Proceedings of the Second World Congress of Nonlinear Analysts, Athens, 1996, Elsevier Science LTD.
  13. Marcin Studniarski, Warunki optymalności wyższych rzędów dla niegładkich zadań programowania matematycznego, Acta Universitatis Lodziensis, 1997 (rozprawa habilitacyjna), 95 str.12.
  14. Marcin Studniarski, Warunki konieczne optymalności drugiego rzędu dla niegładkich zadań programowania matematycznego, IX Konferencja Szkoleniowa z Teorii 2 Zagadnień Ekstremalnych. Materiały szkoleniowe przeznaczone dla uczestników IX Konferencji organizowanej w roku 1988 przez Instytut Matematyki Uniwersytetu Łódzkiego, Łódź 1988, 201-203.
  15. Józef Baranowicz, Marcin Studniarski, On some nonsmooth extremal problem over a family of complex functions, X Konferencja Szkoleniowa z Teorii Zagadnień Ekstremalnych. Materiały szkoleniowe przeznaczone dla uczestników X Konferencji organizowanej w roku 1989 przez Instytut Matematyki Uniwersytetu Łódzkiego, Łódź 1989, 134-143.
  16. Marcin Studniarski, Sufficient optimality conditions with variable Lagrange multipliers, X Konferencja Szkoleniowa z Teorii Zagadnień Ekstremalnych. Materiały szkoleniowe przeznaczone dla uczestników X Konferencji organizowanej w roku 1989 przez Instytut Matematyki Uniwersytetu Łódzkiego, Łódź 1989, 180-185.
  17. Marcin Studniarski, Sufficient conditions for the stability of local minimum points in nonsmooth optimization, Optimization20 (1989), no. 1, 27-35.
  18. Marcin Studniarski, An algorithm for calculating one subgradient of a convex function of two variables, Numer. Math.55 (1989), no. 6, 685-693.
  19. Marcin Studniarski, A simple derivation of sufficient conditions for a local minimum of a Lipschitzian function, Demonstratio Math.22 (1989), no. 1, 73-78.
  20. Marcin Studniarski, Sufficient optimality conditions in terms of the usual gradients for nondifferentiable programming problems, Control Cybernet.18 (1989), no. 1, 7-18.
  21. Józef Baranowicz, Marcin Studniarski, A locally convex extremal problem over some family of complex functions, Math. Nachr.146(1990), 117-125.
  22. Marcin Studniarski, Second-order necessary conditions for optimality in nonsmooth nonlinear programming, J. Math. Anal. Appl.154 (1991), no. 2, 303-317.
  23. Marcin Studniarski, The discrete maximum principle as a sufficient optimality condition. Problems Control Inform. Theory/Problemy Upravlen. Inform.20 (1991), no. 3, 179-186.
  24. Marcin Studniarski, Jeyakumar V., A generalized mean-value theorem and optimality conditions in composite nonsmooth minimization, Nonlinear Anal.24 (1995), no. 6, 883-894.
  25. Marcin Studniarski, Yang, X.Q. Second-order necessary optimality conditions via directional regularity, Optimization 37 (1996), no. 2, 113-124.
  26. Marcin Studniarski, Characterizations of strict local minima for some nonlinear programming problems, Proceedings of the Second World Congress of Nonlinear Analysts, Part 8 (Athens, 1996). Nonlinear Anal.30 (1997), no. 8, 5363-5367.
  27. Marcin Studniarski, Necessary optimality conditions for nonsmooth two-dimensional control systems described by Roesser’s model, Control Cybernet.27 (1998), no. 1, 51-61.
  28. Marcin Studniarski, Characterizations of weak sharp minima of order one in nonlinear programming, Systems modelling and optimization (Detroit, MI, 1997), 207-215, Chapman & Hall/CRC Res. Notes Math., 396, Chapman & Hall/CRC, Boca Raton, FL,1999
  29. Marcin Studniarski, D.E. Ward, Weak sharp minima: characterizations and sufficient conditions, SIAM Journal on Control and Optimization, 38, No. 1(1999), 219-236.
  30. Marcin Studniarski, Characterizations of weak sharp minima of order one in nonlinear programming, System Modelling and Optimization, Proceedings of the 18th IFIP TC7 Conference, 396 (1999), 207-215.
  31. Marcin Studniarski, New characterizations of weak sharp and strict local minimizers in nonlinear programming, 2nd Symposium on Nonlinear Analysis, Toruń, 1999, 66-67.
  32. Marcin Studniarski, Leon Mikołajczyk, Higher-order necessary optimality conditions for extremum problem in topological vector spaces, Dedicated to Juliusz Schauder, 1899-1943, Topological Methods Nonlinear Analysis, 15 (2000), no. 1, 219-236.
  33. Marcin Studniarski, Monika Studniarska, New characterizations of weak sharp and strict local minimizers in nonlinear programming, 19th IFIP TC7 Conference on System Modelling and Optimization, 1999, str. 53.
  34. Marcin Studniarski, New characterizations of weak sharp and strict local minimizers in nonlinear programming, German-Polish Conference on Optimization Methods and Applications, 1999, str. 38.
  35. Marcin Studniarski, On weak sharp minima for a special class of non smooth functions, Discussiones Mathematicae, 20(2000), str. 195-207.
  36. Marcin Studniarski, Leon Mikołajczyk, Higher-order necessary optimality conditions for extremum problems in topological vector spaces, Topological Methods in Nonlinear Analysis, Vol. 15, No. 1(2000), str. 129-139.
  37. Marcin Studniarski, Higher-order necessary optimality conditions in terms of Neustadt derivatives, Nonlinear Analysis 47 (2001), str. 363-373.
  38. Marcin Studniarski, Abdul Whab A. Razak Taha, A characterization of strict local minimizers of order one for nonsmooth static minmax problems, Journal of Mathematical Analysis and Applications 263 (2001), str. 386-376.
  39. Marcin Studniarski, Abdul Whab A. Razak Taha, Stability properties of weak sharp minima, 20th IFIP TC7 Conference on System Modelling and Optimization, July 23-27, 2001, Trier, Germany (Abstracts).
  40. Marcin Studniarski, “Necessary and sufficient conditions for weak sharp minima of nonsmooth nonconvex functions”, French-German-Polish Conference on Optimization, September 9-13, 2002 in Cottbus, Germany, str. 37.
  41. Marcin Studniarski, Taha, A.W.A. Stability properties of weak sharp minima. Control Cybernet. 32 (2003), no. 2, 351−359.
  42. Marcin Studniarski, Rahmo,E.-D., Approximating Clarke’s subgradients of semismooth functions by divided differences, Numer. Algor.43 (2006), 385−392.
  43. Marcin Studniarski, Weak sharp minima in multiobjective optimization. Control Cybernet.36(2007), no.4, 925−937.
  44. Marcin Studniarski, Stopping criteria for a general model of genetic algorithm. In: Evolutionary Computation and Global Optimization 2009,Prace Naukowe Politechniki Warszawskiej, Elektronika, 169 (2009), 173−181.
  45. Marcin Studniarski, Stopping criteria for genetic algorithms with application to multiobjective optimization, In: R. Schaefer et al. (Eds.), Parallel Problem Solving from Nature −PPSN XI, Part I, Lecture Notes in Computer Science 6238(2010), 697−706.
  46. Marcin Studniarski, Finding all minimal elements of a finite partially ordered set by genetic algorithm with a prescribed probability. Numerical Algebra,Control and Optimization, 1 (2011), no. 3, 389−398.
  47. Rahmo, E.-D., Marcin Studniarski, Higher-order conditions for strict local Pareto minima in terms of generalized lower and upper directional derivatives. J. Math. Anal. Appl.393(2012), 212-221.
  48. Marcin Studniarski, New characterizations of weak sharp and strict local minimizers in nonlinear programming.Communications in Optimization Theory 1 (2012), no.1, 19-34.
  49. Rahmo, E.-D., Aleksandra Stasiak, Marcin Studniarski, Lower and upper Ginchev derivativesof vector functions and their applications to multiobjective optimization. Optim. Lett. 8 (2014), no. 2, 653–667.
  50. Anna Michalak, Marcin Studniarski, Necessary and sufficient conditions for a Pareto optimal allocation in a discontinuous Gale economic model. Opuscula Math. 34 (2014), no. 4, 827–835.
  51. Tadeusz Antczak,  Marcin Studniarski, The exactness property of the vector exact l1 penalty function method in nondifferentiable invex multiobjective programming. Numer. Funct. Anal. Optim. 37 (2016), no. 12, 1465–1487.
  52. Marcin Studniarski, Optimization with respect to general preference mappings. Folia Math. 19 (2017), no. 1, 50–54.

Prof. nadzw. dr hab.  Marek Śmietański

  1. Marek Śmietański, Some quadrature-based versions of the generalized Newton method for solving unconstrained optimization problems – accepted in: Numerical Analysis and Its Applications, 6th International Conference, NAA 2016, Lozenetz, Bulgaria, June 15-22, 2017, Revised Selected Papers, Lecture Notes in Computer Science;
  2. Marek Śmietański, A new algorithms for solving unconstrained optimization problems based on the generalized Newton method involving simple quadrature rules – accepted in: Selected Problems on Experimental Mathematics, E. Hetmaniok, D. Słota, T. Trawiński, R. Wituła (eds.), Wydawnictwo Politechniki Śląskiej, Gliwice 2016;
  3. Marek Śmietański, A perturbed version of an inexact generalized Newton method for solving nonsmooth equations – Numerical Algorithms, Vol. 63 No. 1 (2013), 89-106;
  4. Marek Śmietański, A note on characterization of solution sets for some nonlinear programming problems – Applicable Analysis, Vol. 91 No. 11 (2012), 2095-2104;
  5. Marek Śmietański, Some superlinearly convergent inexact quasi-Newton method for solving nonsmooth equations – Optimization Methods & Software, Vol. 27 No. 3 (2012), 405-417;
  6. Marek Śmietański, Some quadrature-based versions of the generalized Newton method for solving nonsmooth equations – Journal of Computational and Applied Mathematics, Vol.235 No.17 (2011), 5131-5139;
  7. Marek Śmietański, An approximate Newton method for equations with infinite max functions – International Journal of Computer Mathematics, Vol.88 No.11 (2011), 2403-2414;
  8. Marek Śmietański, Convergence of an inexact generalized Newton method with a scaled residual control – Computers & Mathematics with Applications, Vol.61 No.6 (2011), 1624-1632;
  9. Marek Śmietański, An experimental study on XML data processing efficiency in RDBMS based on SQL Server, in: Information Technology in Management and Marketing, M.Kubina et al. (eds.), EDIS, University Publishing House, Žilina 2010, 205-214;
  10. Marek Śmietański, Indexing XML data and the performance of XQuery in relational database based on SQL Server 2008, in: Information Systems in Management VI. Ontologies and Data Base Technologies, P.Jałowiecki, A.Orłowski (eds.), WULS Press, Warsaw 2010, 109-120;
  11. Marek Śmietański, Marcin Drozd, Selected aspects of the integration of XML data with relational data in database systems, in: Information Systems in Management IV, W.Karwowski, A.Orłowski (eds.), WULS Press, Warsaw 2010, 85-93;
  12. Marek Śmietański, Marcin Drozd, Efficiency of XQuery in processing native XML data stored in relational database, in: Information Systems in Management IV, W.Karwowski, A.Orłowski (eds.), WULS Press, Warsaw 2010, 75-84;
  13. Marek Śmietański, Convergence of a generalized Newton and an inexact generalized Newton algorithms for solving nonlinear equations with nondifferentiable terms – Numerical Algorithms, Vol.50 No.4 (2009), 401-415;
  14. Marek Śmietański, XQuery language and other technologies of data querying in relational database based on SQL Server, in: Information Systems in Management II, A.Jakubiec, W.Karwowski, A.Orłowski (eds.), WULS Press, Warsaw 2008, 144-154;
  15. Marek Śmietański, A nonsmooth version of univariate optimization algorithm for locating the nearest extremum – Central European Journal of Mathematics, Vol.6 No.3 (2008), 469-481;
  16. Marek Śmietański, Selected aspects of managing XML data and XQuery language in relational database systems based on SQL Server, in: Scientific Conference Proceedings – Methods and Tools of Software Developing, Szklarska Poręba 2007, B.Hnatkowska, Z.Huzar (eds.), Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2007, 321-332;
  17. Marek Śmietański, Inexact quasi-Newton global convergent method for solving constrained nonsmooth equations – International Journal of Computer Mathematics, Vol.84 No.12 (2007), 1757-1770;
  18. Marek Śmietański, On a new class parametrized Newton-like method for semismooth equations – Applied Mathematics and Computation, Vol.193 No.2 (2007), 430-437;
  19. Marek Śmietański, A generalized Jacobian based Newton method for semismooth block-triangular system of equations – Journal of Computational and Applied Mathematics, Vol.205 No.1 (2007), 305-313;
  20. Marek Śmietański, An approximate Newton method for equations with finite max functions – Numerical Algorithms, Vol.41 No.3 (2006), 219-238;
  21. Marek Śmietański, Kuhn-Tucker type optimality conditions for some class of nonsmooth programming problems – Control and Cybernetics, Vol.32 No.2 (2003), 361-376;